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Abstract 
Distributed video encoding can utilize the high degree of parallelism that exists within the encoder operations similar to 
parallel implementations of embarrassingly parallel problems. However, the data partitioning, allocation, and scheduling 
schemes used there cannot be directly applied to video encoding. The primary cause is the Spatio-temporal data 
dependency between different processors and need for synchronization between the various tasks. There is also a lack 
of the lowest common unit of computation on which to base the performance model of the system. We propose some 
parameters and their use for a new performance prediction model. 
 

1. Introduction 
The logical architecture of most distributed video 
encoding systems is the master-slave approach of figure 
1.1. This architecture is one of the simplest approaches 
toward the distribution of computation tasks among a 
set of distributed computing resources. A single master 
process controls both the distribution of encoding tasks 
to slaves, and manages collection of returned results and 
subsequent processing that may be necessary to form a 
syntactically correct bitstream. 

Figure 1.1 Logical Architecture 
There have been several attempts to date at encoding 
video on clusters of workstations, notably [1][2][3][4][5] 
[6]and several others. Almost all of them are based on 
the above architecture. The major differences lie in the 
granularity of parallelism. The general approach has 
been to divide the entire computation into a series of 
equal sized tasks and then allocate them to the different 
processors without much consideration for the 
performance heterogeneity inherent in such systems. 
Scheduling algorithms along with accurate predictive 
performance modeling have not been used to improve 
the performance of distributed systems. 
In Section 2, we explain the traditional approaches in 
management of the task queue and scheduling and 
discuss why this approach is insufficient in the case of 
video encoding. In Section 3, proposed amendments 
are presented. Section 4 concludes with the summary 
and future work. 
 
2. Traditional Approach and Shortcomings 
The granularity of partitioning has varied from 
macroblock (MB) level [3] to GOP based schemes where 
each processor is assigned an entire GOP for encoding 
[6]. These schemes did not take into account the 
different computational capacity, present processor 
workload, and network conditions of the individual slaves 
(and the master), and the results have been sub-optimal. 

Figure 2.1 GOP Partitioning, from:[6] 

Figure 2.2 Frame Decomposition, from: [3] 
To be able to utilize the limited resources available with 
maximum efficiency, the application requirements and 
resource capabilities should be thoroughly understood 
and modeled accordingly.  
A simple comparative estimate of the processor 
capability can be taken by assigning an equal amount 
of work to the individual processors and measuring the 
total time taken by each to complete it. The work is then 
partitioned among them in proportion to their capability 
so that the time taken by each to perform the work is 
equal [6]. The work allocated to processor i is: 

Where, w(i) is the work allocated to processor i, W is the 
total units of work available, t(i) is the processing time for 
unit work on processor i, and P is the total number of 
processors 
This offers improved performance as compared to 
systems that use equal partition size. The problem with this 
approach is that it is a reactive system. There is no 
prediction of the system performance upon which to 
base the scheduling. The points in time where the 
performance is measured, the allocation is decided, and 
the actual work is done are all different. The dynamic 
nature of the resources means that the state of the 
system differs at these points and the performance is 
different from expected to a large degree. 
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processors, adjustments are made to ensure that the sum 
does not exceed or fall short of N. 
With network load prediction system such as NWS [9], the 
network link capacity is calculated. Currently we ignore 
the link latency. With the bandwidth Bi bytes/second for 
processor Pi and S bytes/WU, we calculate the effective 
capacity of the network link Net(Pi) in WU/s. 

We observe that this value is the limiting factor in 
assigning the WUs to the respective processor. For 
example, the processor may be capable of processing 
200 IWU/s but the network may allow only 130 WU/s to be 
sent to the processor. 
Up to now we have just considered the transmission of 
raw video data to the processors for encoding. However, 
the reception of encoded data from the processors is 
equally important and also consumes large amount of 
the network bandwidth. Since the compression ratio per 
WU is variable, it is difficult to quantify the output result 
data per WU. However, we feel that the effect of 
“upload” is lower than “download” because the amount 
of information to be moved is smaller. We are working on 
how to factor in this parameter into the system. 
Similarly, estimation of the processing to be done by the 
master also needs to be investigated in detail so that the 
complete performance model can be established. 
 
4.  Conclusion 
We analyzed the various problems in adapting the 
traditional partitioning and scheduling approaches for 
video encoding on distributed systems. We proposed the 
amendments necessary to these models for video 
encoding. Our future work will involve detailed simulation 
testing and implementation for optimal scheduling of 
distributed video encoding on the internet.  
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Another point where this model breaks down is when the 
communication time is much longer compared to the 
computation time since the parallel operation gets 
reduced to simple serial processing [8]. In figure 2.3, T1, 
T2, T3 are the communication times, while C1, C2, C3 are 
the computation times per WU for processors 1, 2, 3. 

Figure 2.3 Process Serialization, from: [8] 
Since the time T1 is very long, only a single round of results 
can be processed before the second round results are 
ready to be received. The total execution time becomes 

 
3. Proposed Amendments 
To predict application behavior we need at least to: 
(a) determine the granularity i.e. basic Work Unit (WU), 
(b) measure slave capacity for processing each WU, 
(c) find the amount of processing per WU necessary on 

Master, 
(d) know the Network link capacity and condition, and 
(e) monitor the present processor workload 
We consider the video macroblock (MB) as the work unit 
(WU) on which all operations are carried out. Since the 
operation a MB undergoes depends on the type of 
frame being processed (I/P/B), we propose the creation 
of three basic work units instead of one – the IWU, PWU, 
and BWU. For example, a P frame may contain a few I 
MBs, but for the sake of calculation, it will be considered 
as a PWU. A test sequence is run on each processor and 
the time taken to encode individual frames is measured. 
We calculate the average time taken to encode each 
type of WU. The capacity of processor Pi to process IWUs, 
PCIWU when unloaded in terms of IWU/s: 

Where N is the number of IWUs per I frame, IF is the total 
number of I frames in the test sequence, and ITENC(n) is the 
encoding time per I frame. For example, we can say that 
slave Pi can process xi IWU/s, yi PWU/s, and zi BWU/s when 
unloaded. With the help of NWS [9] the present CPU 
availability Ai can be calculated as a number between 0 
and 1. The number of IWUs to be assigned to Pi then is: 

Similar values are calculated for PWUs and BWUs. The 
average of the three values is taken and rounded to 
nearest integer. This value is used as the reference WU to 
be allocated to Pi. After calculating WU values for all the  
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