
Architecture for Distributed Video Encoding on the Internet
インタネット上での分散ビデオ符号化アーキテクチャー

Abhay Ghatpande Hidenori Nakazato Hiroshi Watanabe
 ガトパンデ アバイ 中里 秀則 渡辺 裕

Graduate School of Global Information and Telecommunication Studies, Waseda University
早稲田大学大学院 国際情報通信研究科

Abstract
Distributed video encoding can utilize the high degree of parallelism that exists within the encoder operations similar to
parallel implementations of embarrassingly parallel problems. However, the data partitioning, allocation, and scheduling
schemes used there cannot be directly applied to video encoding. The primary cause is the Spatio-temporal data
dependency between different processors and need for synchronization between the various tasks. There is also a lack
of the lowest common unit of computation on which to base the performance model of the system. We propose some
parameters and their use for a new performance prediction model.

1. Introduction
The logical architecture of most distributed video
encoding systems is the master-slave approach of figure
1.1. This architecture is one of the simplest approaches
toward the distribution of computation tasks among a
set of distributed computing resources. A single master
process controls both the distribution of encoding tasks
to slaves, and manages collection of returned results and
subsequent processing that may be necessary to form a
syntactically correct bitstream.

Figure 1.1 Logical Architecture
There have been several attempts to date at encoding
video on clusters of workstations, notably [1][2][3][4][5]
[6]and several others. Almost all of them are based on
the above architecture. The major differences lie in the
granularity of parallelism. The general approach has
been to divide the entire computation into a series of
equal sized tasks and then allocate them to the different
processors without much consideration for the
performance heterogeneity inherent in such systems.
Scheduling algorithms along with accurate predictive
performance modeling have not been used to improve
the performance of distributed systems.
In Section 2, we explain the traditional approaches in
management of the task queue and scheduling and
discuss why this approach is insufficient in the case of
video encoding. In Section 3, proposed amendments
are presented. Section 4 concludes with the summary
and future work.

2. Traditional Approach and Shortcomings
The granularity of partitioning has varied from
macroblock (MB) level [3] to GOP based schemes where
each processor is assigned an entire GOP for encoding
[6]. These schemes did not take into account the
different computational capacity, present processor
workload, and network conditions of the individual slaves
(and the master), and the results have been sub-optimal.

Figure 2.1 GOP Partitioning, from:[6]

Figure 2.2 Frame Decomposition, from: [3]
To be able to utilize the limited resources available with
maximum efficiency, the application requirements and
resource capabilities should be thoroughly understood
and modeled accordingly.
A simple comparative estimate of the processor
capability can be taken by assigning an equal amount
of work to the individual processors and measuring the
total time taken by each to complete it. The work is then
partitioned among them in proportion to their capability
so that the time taken by each to perform the work is
equal [6]. The work allocated to processor i is:

Where, w(i) is the work allocated to processor i, W is the
total units of work available, t(i) is the processing time for
unit work on processor i, and P is the total number of
processors
This offers improved performance as compared to
systems that use equal partition size. The problem with this
approach is that it is a reactive system. There is no
prediction of the system performance upon which to
base the scheduling. The points in time where the
performance is measured, the allocation is decided, and
the actual work is done are all different. The dynamic
nature of the resources means that the state of the
system differs at these points and the performance is
different from expected to a large degree.

Global
Decomposition

Local Buffers

Slave Slave Slave

M

S S S

Raw Data
Result Data
Computation

M Master
S Slave

∑ =

= P

i
it

itWiw
1
)(

)(*)((2.1)

processors, adjustments are made to ensure that the sum
does not exceed or fall short of N.
With network load prediction system such as NWS [9], the
network link capacity is calculated. Currently we ignore
the link latency. With the bandwidth Bi bytes/second for
processor Pi and S bytes/WU, we calculate the effective
capacity of the network link Net(Pi) in WU/s.

We observe that this value is the limiting factor in
assigning the WUs to the respective processor. For
example, the processor may be capable of processing
200 IWU/s but the network may allow only 130 WU/s to be
sent to the processor.
Up to now we have just considered the transmission of
raw video data to the processors for encoding. However,
the reception of encoded data from the processors is
equally important and also consumes large amount of
the network bandwidth. Since the compression ratio per
WU is variable, it is difficult to quantify the output result
data per WU. However, we feel that the effect of
“upload” is lower than “download” because the amount
of information to be moved is smaller. We are working on
how to factor in this parameter into the system.
Similarly, estimation of the processing to be done by the
master also needs to be investigated in detail so that the
complete performance model can be established.

4. Conclusion
We analyzed the various problems in adapting the
traditional partitioning and scheduling approaches for
video encoding on distributed systems. We proposed the
amendments necessary to these models for video
encoding. Our future work will involve detailed simulation
testing and implementation for optimal scheduling of
distributed video encoding on the internet.

References
[1] Ahmad I, et al, “A Scalable Off-line MPEG-2 Video Encoding
Scheme Using a Multiprocessor System”, Parallel Computing,
Elsevier Pub.,Vol 27, Issue 6, May 2001, pp 823-846.
[2] Shen K. and Delp E., “A Spatio-Temporal Parallel Approach
for Real-Time MPEG Video Compression”, Proc. of ICPP 1996, Vol.
2, Aug 1996.
[3] Akramullah S, et al, “Parallelization of MPEG-2 Video Encoder
for Parallel and Distributed Computing Systems”, Proc. of the 38th
Midwest Symposium on Circuits and Systems, Vol. 2, Aug 1995.
[4] Bozoki S, et al, “Parallel Algorithms for MPEG Video
Compression with PVM”, Proc. of Eurosim 1996, Jun 1996.
[5] Farin D, et al, “SAMPEG,a Scene Adaptive Parallel MPEG-2
Software Encoder”, Proc. of SPIE VCIP, Jan 2001.
[6] Ribeiro M, et al, “MPEG-4 natural Video Parallel
Implementation on a Cluster”, Proc. of 12th Portuguese
Conference on Pattern Recognition, Jun 2002.
[7] Berman F, et al, “Application-Level Scheduling on Distributed
Heterogeneous Networks”, Proc. of Supercomputing’ 96, Nov
1996.
[8] Shao G, “Adaptive Scheduling of Master/Worker Applications
on Distributed Computational Resources”, Ph.D. thesis, University
of California, San Diego, 2001.
[9] Wolski R,, et al, “The Network Weather Service: A distributed
resource performance forecasting service for metacomputing”,
Future Generation Computer Systems, Vol. 15 (5-6), Oct 1999

Another point where this model breaks down is when the
communication time is much longer compared to the
computation time since the parallel operation gets
reduced to simple serial processing [8]. In figure 2.3, T1,
T2, T3 are the communication times, while C1, C2, C3 are
the computation times per WU for processors 1, 2, 3.

Figure 2.3 Process Serialization, from: [8]
Since the time T1 is very long, only a single round of results
can be processed before the second round results are
ready to be received. The total execution time becomes

3. Proposed Amendments
To predict application behavior we need at least to:
(a) determine the granularity i.e. basic Work Unit (WU),
(b) measure slave capacity for processing each WU,
(c) find the amount of processing per WU necessary on

Master,
(d) know the Network link capacity and condition, and
(e) monitor the present processor workload
We consider the video macroblock (MB) as the work unit
(WU) on which all operations are carried out. Since the
operation a MB undergoes depends on the type of
frame being processed (I/P/B), we propose the creation
of three basic work units instead of one – the IWU, PWU,
and BWU. For example, a P frame may contain a few I
MBs, but for the sake of calculation, it will be considered
as a PWU. A test sequence is run on each processor and
the time taken to encode individual frames is measured.
We calculate the average time taken to encode each
type of WU. The capacity of processor Pi to process IWUs,
PCIWU when unloaded in terms of IWU/s:

Where N is the number of IWUs per I frame, IF is the total
number of I frames in the test sequence, and ITENC(n) is the
encoding time per I frame. For example, we can say that
slave Pi can process xi IWU/s, yi PWU/s, and zi BWU/s when
unloaded. With the help of NWS [9] the present CPU
availability Ai can be calculated as a number between 0
and 1. The number of IWUs to be assigned to Pi then is:

Similar values are calculated for PWUs and BWUs. The
average of the three values is taken and rounded to
nearest integer. This value is used as the reference WU to
be allocated to Pi. After calculating WU values for all the

〒169-0051 Tokyo, Shinjuku-ku, Nishi Waseda 3-1-10, 29-7 Bldg
abhay@toki.waseda.jp, {nakazato, hiroshi}@giti.waseda.ac.jp

(2.2)
∑ =

= P

i

serial
iT

PT
1

)(

∑ =

∗
= IF

n ENC

iIWU
nT

IFNPPC
1

)(
)(

(3.1)

(3.2)
∑ =

∗

∗
∗= P

i ii

ii
i

xA

xA
NPIWU

1

)(

SBPNet ii =)((3.3)

