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1. Introduction 
 
Real-time video processing, such as rendering and/or encoding, is one of the most bandwidth demanding 
operation in audio-visual applications [1][2]. There have been many efforts at parallelizing video 
rendering and encoding architecture mainly for VLSI chip design [3][4][5][6][7][8][9][10][11][12][13] 
[14][15][16]. However, not a lot of research has been dedicated in the area of distributed computing for 
real-time video processing [1][2][17][18][19][20]. Distributed computing on the Internet has mainly been 
applied to applications in which data could be processed in non-real-time [10]. For visual communication, 
real-time constraints give additional requirements to data processing in distributed computing. It is 
necessary to assure the processing time of distributed data since processing period for one frame of video 
is limited to 1/25 or 1/30 second in most cases. Thus, processing delay is a critical factor for video 
processing applications especially in the case of non-homogeneous computing environment, such as 
distributed computing on the Internet. In this paper, we first survey the trend of distributed computing for 
video processing, followed by introducing some architecture for distributed computing of real-time video 
application, particularly video encoding.  
 
2. Video Encoding and Distributed Computing 
 
Distributed computing, which requires universal access to high-grade computation facilities, is yet to be 
achieved. Average users still suffer from a chronic lack of bandwidth and processing power for 
demanding applications. Computation complexity and bandwidth necessity make video encoding difficult. 
Thus, parallel and distributed architectures for video encoding have been the subject of research for these 
ten years. Most successful attempts have unfortunately remained in the dominion of those with high 
performance computers connected by high-speed networks. Commercial grade video encoding and new, 
high-quality encoder/decoder are not available to average users. Architecture to distribute and encode 
video on the Internet would benefit users immensely. Though such a system would be non-real-time for 
some time to come [10], it would enable Internet users to encode and share high quality videos.  
 
It is beneficial to realize state of the art video coding, such as MPEG-4 and AVC (H.264), by distributed 
computing architecture. It can also be used for the conventional MPEG-2 and MPEG-1 standards. 
Another application envisaged is the encoding of HDTV and digital cinema, etc. The purpose is to 
empower the user community to be able to encode and share high quality video without the associated 
high cost. 
 
Audio and video exchange continues to dominate the traffic on P2P (Peer to Peer) networks today. Media 
capture, streaming, download, voice and video chat are important applications for the average Internet 
user. Storage capacity of magnetic hard disks has increased exponentially over the past few years. CPU 
processing speed has been improved substantially with special instructions for audio and video processing. 
The reality, however, is still that users cannot generate high-quality video on their own, primarily because 
video encoding has very high computation requirements. Though very good video encoder/decoder 
abound, normally users cannot easily access to them. Thus, users are stuck with grainy videos captured 
with low-resolution cameras while commercially excellent HDTV resolution video is available. 
 
If there is a “video encoding grid” deployed over the intranet of the company or over the Internet, users 
can submit the job to the grid, along with some kind of encoding parameters. The video is distributed over 
the processors available and the encoded video is returned either to the originator or to any other specified 
machine where it is assembled in to syntactically correct bit stream. 



 
There are very few distributed computing projects that focus on video encoding or processing so far. On 
the other hand, there have been many researches on parallel processing architecture for designing video 
encoding chips. Though internet distributed video encoding differs significantly from encoding using a 
bank of parallel processors, a review of parallel encoding techniques will give us some insight into the 
issues involved. Currently, bandwidth limitations will force such a video-processing grid to operate in 
non-real-time. It can be expected that as bandwidth issues diminish in the future, real-time operations will 
become feasible. 
 
There have been many more efforts at parallelizing video encoding than can be mentioned here. If we 
disregard massively parallel implementations using an array/grid of tightly integrated microprocessors or 
specially designed hardware [3] because they fall outside our purview of interest, then 
[7][10][11][12][13][14] provide a good sample of the efforts in this direction. 
 
The problem of software-based video encoding using parallel processing is non-trivial, and cannot be 
solved by simply replicating multiple sequential encoders on different processors. The local memory of a 
single processor is usually not large enough to hold more than a few frames and thus an efficient I/O 
methodology is required to bring the data in and to take the compressed data out of the processors. Since 
the video signal can be viewed as a 3D signal, various partitioning schemes are possible. The parallelism 
can be exploited at several levels of image (Fig. 1), especially based on a size of image data and a block 
of some images, such as macroblock (a unit of motion compensated interframe prediction), slice (a group 
of macroblocks in the horizontal direction), frame, and/or “Group of Pictures” (GOP) levels. 
 

Fig.1  Levels of image based on the data size. 
 
A natural solution to on-line encoding is to partition a frame as it arrives among many processors [7][11]. 
All processors then concurrently encode their parts of the frame data. The degree of parallelism can be 
increased by making the granularity as small as possible in terms of the processing data size and the 
number of available processors. 
 
This is non-trivial though since the computations of individual processors are not independent and the 
processors need to communicate with each other to exchange certain parameters and data. The encoding 
times are not the same for all the partitions and hence the global synchronization can incur waiting times 
at some processors. Additionally, the overhead of data distribution and concatenation of results can 
saturate the speedup if the number of processors is increased. The drawback of such an approach, in 
addition to massive parallelism, is that the speedup may saturate since a macroblock is the smallest unit of 
data that can be reasonably assigned to one processor. Decreasing the granularity beyond a macroblock 
would incur very heavy inter-processor communication due to motion estimation that requires data 
beyond the local block [10]. When video data is available on some storage disk, partitioning in the 
temporal direction may be advantageous and let each processor or a group of processors encode a 
sequence of frames such as GOP [13]. 
 
Many of the schemes outlined above have reported very good results with encoding speedup. Frame rates 
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of over 41 frames per second for CIF (Common Intermediate Format, 352 x 288 pixels) sequence have 
been reported [19] and 33 frames per second for ITU-R 601 (Conventional television resolution, 720 x 
480 pixels) [20]. The results above would be very encouraging if were not for the fact that they have been 
carried out on machines such as the Intel Paragon and Touchstone Delta with 100 to 512 processors. 
These machines are supercomputers with massive amounts of shared memory, data bandwidth, reserved 
networks, and high performance CPUs. The end result is that the average user is again left without any 
gain out of these successful experiments. 
 
3.  Real-time Grid Design 
 
It would be beneficial to design an architecture, which enables high quality video encoding over open 
networks like the Internet. This approach would enable common users to make use of high quality video 
encoder/decoder and encode high-resolution videos irrespective of the bandwidth constraints. To design 
such architecture, it is necessary to take a look at distributed computing in general and grid computing in 
particular [17][21][22][23][24][25][26]. 
 
It is envisioned to enable communities (“virtual organizations”) to share geographically distributed 
resources as they pursue common goals [27][28]. There is a distinctive absence of: 

- Central location, 
- Central control, 
- Omniscience, 
- Existing trust relationships. 

The idea is to be able to share resources at will - computers, storage, sensors, networks, etc. This takes the 
concept beyond standard client-server with distributed data analysis, computation, and collaboration aided 
by the creation of large or small, static or dynamic, multi-institutional virtual organizations. 
 
It can be easily seen that there are several differences with respect to parallel systems: 

- Dynamic system of resources, 
- Large heterogeneous and diverse systems, 
- Sharing of resources, 
- Transparent resource allocation, 
- Unreliable network connectivity, link capacity, delay. 

What this translates into for distributed video encoding is that the number of processors (machines) 
available may vary not only from session to session but also during the session itself. Here, one session is 
the complete encoding of one video sequence. Second, the processors may have varying characteristics, 
processing capabilities, and instruction sets. Third, there are no guarantees regarding the time that will be 
taken to complete a job, or whether it will be completed at all. Fourth, the links between the processors 
may each have different characteristics and capacities. 
 
All these factors may give an impression of utter chaos and complete uncertainty. However, there are 
several toolkits such as Globus [29], Legion [30], etc. that act as middleware to take care of most of these 
problems. With this layer of abstraction in place, we can concentrate on the higher-level algorithms for 
distribution and encoding of the video frames. Considering the special requirements for computation over 
grids, we can design architecture quite different than what is used for simple parallel encoding on a 
cluster of networked PCs [17]. 
 
4. Research Topics  
 
Input/output (I/O) in parallel computer systems can be a bottleneck in a number of parallel applications. 
Removal of the I/O bottleneck requires an integrated approach, which addresses the problem at all the 
levels in the system, including the storage and parallel architecture [31]. In the context of video encoding, 
the objective is to accomplish the optimal encoding rate, which can be achieved if all the processors are 
kept busy. This means that their waiting times are zero. This requires a careful I/O strategy that is highly 
pipelined and always provides data whenever a processor finishes encoding of its previously assigned 



data. This, in turn, requires a data layout scheme that can minimize all of the overhead and the yield the 
desired I/O rate [10]. In a distributed system implemented using cycle stealing mechanism for example, 
the duration for which each processor is available and the processing capability of the CPU (memory, 
peripherals, instruction set, etc) may be vastly different. If there is at least some semblance of 
synchronization to be maintained, it is necessary that the encoding load should be distributed according to 
the capability of the processor. This means that the video frame may have to be split unevenly, i.e. not 
fixed number of macroblocks as in parallel system. Other factors such as object-based coding outlined 
below may also benefit from this non-uniform split of the frame data [32][33][34][35]. We need to 
implement a strategy to divide the frame data that will take into account all these factors. 
 
Experimental results have proven that motion estimation/compensation is the most computation intensive 
and consequently most time consuming process of video encoding. Sometimes during parallelization the 
overhead of data distribution and collection exceeds that of motion estimation/compensation 
[7][13][14][36]. These two issues are closely related. We need to incorporate an efficient motion 
compensation strategy into an architecture that will provide high quality prediction and at the same time 
minimize data to be exchanged between source and each processor, and amongst the processors. Many 
strategies for parallel motion compensation [37][38][39] have been successful for the static configurations 
of those systems. However, the same strategies will not work well for a dynamic and changing 
environment of distributed computing.  
 
Another important factor to be considered is that most of these strategies were used for MPEG-2 or older 
video coding standards. MPEG-4 and AVC (H.264) for example provide the facility of coding arbitrary 
shapes (object-based coding) and these algorithms do not provide solutions for this possibility. Any future 
algorithm should incorporate the facility for motion compensation of arbitrary and changing shapes. 
 
Another issue of prime importance in a video encoder, irrespective of whether it is distributed or not, is 
the output bitrate control. Accurate bitrate control is not an easy task in distributed computing 
environment. A multi-level rate control scheme is proposed in [40] which enables reasonably good rate 
control accuracy in a parallel implementation. However, issues similar to those outlined above for motion 
compensation are applicable to rate control too. The frame may not be divided into equal parts for 
distribution. In that case, it would be difficult to estimate the bit allocation for each part. The other point 
is that we wish to support arbitrary shape encoding means that we have to use bitrate control algorithms 
for object-based coding. 
 
In short, some of the issues to be addressed can be stated as follows: 

- How to split the frame into regions for distribution? 
- How to monitor the processors available, their processing capability? 
- How to monitor link connectivity, performance? 
- Strategy to allocate the regions to respective processors for encoding? 
- Strategy to limit the search area for motion compensation? 
- How to finish the entire job the fastest? 
- How to minimize processing time and idle time of processors? 
- How to optimize the utilization of available resources? 
- Reallocation/Recovery strategy in case of processor/link failure? 
- Strategy for bitrate control? 
- Strategy to support arbitrary shape encoding? (subset of frame splitting) 

All items listed in this section have not yet been solved. One possible solution is to start from sketching 
from high-level functions of a system, which consists of mainly two subsystems - the video pre-processor, 
and the encoding subsystem. An example of such system is shown in Fig. 2.  
 
The pre-processor performs two important functions: 

- Identifies regions with similar feature characteristics (color, texture, motion) 
- Provides approximate motion data of these regions 

This means that the output of the pre-processors is a list of different sized regions in the frame that exhibit 



similar characteristics and can be encoded together. We can consider the image to be “tagged” at block or 
macroblock level and each tag identifies the region to which the block belongs, the approximate motion 
vector for the block, and the characteristic that identifies that block. A lot of details have been glossed 
over in this sketch. It presents just an idea for segmenting the video frame into manageable and correlated 
pieces. Though difficult, this sketch could be broken down by some algorithms and implemented with 
reasonable effort. 
 
5. Conclusion 
 
In this paper, we introduced some architecture for distributed computing of real-time video encoding after 
surveying the trend of distributed computing for image processing. Processing delay is a critical factor for 
video processing applications especially in the case of non-homogeneous computing environment, such as 
distributed computing on the Internet. Recent researches in this area have been lead by Prof. M. L. Liu of 
Hong Kong University of Science and Technology, Prof. R. Taniguchi of Kyushu University, and Prof. E. 
J. Delp of Purdue University. These researchers have been tackling a lot of difficult problems. However, 
there are still many issues to be solved if we wish to realize distributed computing for state of the art 
object-based video encoding on the Internet.  
 

 
Fig. 2  High-level functions of distributed video encoding system. 
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