0-7803-7304-9/02/$17,00 C2002 IEEE

MPEG-4 Very Low Bit-rate Video Compression
by Adaptively Utilizing Sprite to Short Sequences

Kumi Jinzenji , Shigeki Okada , Naoki Kobayashi ,and Hiroshi Watanabe®
*NTT Cyber Space Laboratories, NTT Corporation
+Global Institute of Telecommunication and Information, Waseda University

Abstract

In MPEG-4, a video sequence can be divided into
foreground object and background objects that are
independently encoded. Using sprites can
dramatically compress the overall bit rate but not all
video sequences can be so encoded. This paper
introduces MPEG-4 multimode coding; it offers
automatic coding mode decision, video object
generation and high compression efficiency. The
source video sequence is segmented and each
segment is automatically categorized as either
“normal”, which is encoded using MPEG-4 simple
profile, or as “sprite”. Coding experiments shows
that if the bit rate is low, multimode coding offers
more high coding efficiency than regular MPEG-4
in terms of frame rate and image quality.

Bitstream

1. Introduction

We focused on sprite coding in MPEG-4 [1] and
proposed the two-layer video object model and
“Sprite Mode"[2]. Figure 1 shows our concept of
sprite. mode. In sprite mode, the video data is
automatically divided into two object types:
foreground and background. The foreground object
contains all moving regions without camera motion.
Each background object is effectively a still image,
a sprite, so coding efficiency can be dramatically
improved. The foreground object is compressed
using MPEG-4 object coding, while background
object is compressed using sprite coding. For some
video sequences, sprite coding is not suitable.
Examples include images with no camera motien or
large foreground objects. To enhance overall coding
efficiency and lower manual operation costs, we
introduce a new MPEG-4 encoding algorithm that
offers automnatic sprite generation and application.
We call it multi-mode coding. First, the source
video seguence is split into short segments.
Multi-mode coding examines each segment and
processss it using the conventional coding scheme,

653

“normal mode”, or using sprite coding, “sprite
mode”. A simulation shows the effectiveness of
multi-mode coding in low bit-rate compression
from the viewpoint of image quality and frame rate.

Section 2 introduces the algorithm of multi-
mode coding. Sections 3 and 4 explain details of the
video processing and coding routines, respectively.
Some coding experiments are discussed in Section
5, and our study is then concluded.

Automatic VOPO] z
Input VOP S [Bitstream
Definition VOP 1
jw] VOF 0
=
E Composition [— Qutput
> VOFP 1

VOP1: Foreground moving object
VOPO: Background object

Fig.1 Concept of “sprite mode” coding [2]

2. The algorithm of “multi-mode ”
coding

2.1 Automatic coding mode decision and video
data processing

Figure 2 shows the concept of multi-mode coding.
Figure 3 indicates the multi-mode coding flow chart.
The source video data is first cut into short
segments of duration T seconds. If the segment
contains a cut point, it is automatically tagged as
"N" {indicating that normal mode coding is to be
applied) and no further assessment is performed on
this segment.

Automatic I i Normal mode

Mode

decision .-’

module

Sprite mode
-Sprite coding

-Object coding

High compression

Normal mode

Sprite mode

Fig.2 The cencept of multi-mode coding

AV1 video data

| GMV, MV, Cut, detection 1

MV, GMV,
Foreground object

prite candidatg ?

Yes

pre-sprite generation

Foreground extraction

Second mode decision

Rearrangement

| Sprite generation |

I
| Encoder | ¢—

Fig. 3 The algorithm of -coding

2.2 The first coding mode decision by GMV

Global motion vectors (GMV) are estimated for
each of the segments remaining after cut point
detection using the modified method described in
[2]. If the size of GMV, particularly panning and
tilting parameter, of a segment falls under a
threshold, the camera motion in the stack is
estimated as “still”’, and the segment is tagged N

654

otherwise, it is tagged a candidate of "S" (indicating
that sprite mode coding is to be applied).

2.3 The second coding mode decision by
foreground ratio

A provisional sprite is generated for each S segment
using the method of [2]. Briefly, the provisional
sprite is generated by calculating the median of the
pixel intensity at the same position, when all frames
are aligned in XYT space. Macro-block hased
foreground objects are then extracted frame by
frame. Reference [2] notes that the sprite mode is
effective only if the foreground ratio is relatively
small, so if the segment has an excessive
foreground ratio, it retagged as N.

2.4 The final mode decision

Since isolated S segments are relatively ineffective,
all S segments that are bounded by N segments are
retagged as N. Finally, continuous runs of S and N
segments are combined and coded appropriately.

3. The details of video processing

We have improved some of the video processing
tools necessary for coding mode decision and video
ohject generation. We introduce here improved
algorithms for global motion estimation (GME) and
sprite generation. The basic algorithms are shown
in reference [2].

3.1 Improved GME algorithm

The improved GME algorithm offers higher quality
sprite generation and foreground object extraction.
Generally speaking, in the bottomup approach,
GME accuracy depends cn the accuracy of
determining local motion vectors. A video sequence
with large smooth areas produce a lot of inaccurate
local motion vectors (LMV), so the resulting GMV
does not always represent real camera motion. This
is a critical problem for generating sprites. On the
other hand, the top-down approach provides
generally very much computational cost.

Accordingly, we combine the bottomup and

top-down approaches as detailed below.

(1) Provisional GMV is calculated using {2].

(2) The difference between LMV and LMV in
each macro-block position is determined.
LMV is the local motion value of GMV in the
macro-block position.

(3) If he sum of the difference is more than a
certain threshold, GMV is recalculated using
the top-down approach. Otherwise, GMV of
the next frame is calculated in the bottom-up
approach.

3.2 Improved sprite generation algorithm
The background objects, what are left after
extracting the foreground objects, are processed to
generate a high quality sprite [2]. The sprite image
is generally corrupted by the residuals of
foreground objects created by imperfect extraction.
Therefore, after aligning all frames of the segment
in XYT space, a provisional sprite {(median sprite)
is generated. At each macro-block position, the
macro-block MB(x,y,t) in XYT space that has the
smallest difference from the provisional sprite is
selected as part of the final sprite SP{x,y).

4. Details of video coding

To improve sprite mode quality, we propose two
methods: multi video object rate control using
sprite and sprite transformation.

4.1 Multi video ahject rate control for sprite

We use the rate control algorithm of VMI17 [4] for

normal mode. It may appear that the multi video

object rate control algorithm proposed by Vetro et
al. [3] could not be used for sprite coding. Video
objects are assumed to be “ motion pictures”, so still
images such as sprites are not suitable as coding
subjects. Moreover, we emphasize the importance
of lowering the latency of sprites and so developed

a new multi video object rate control method.

{1) First, foreground and background objects are
encoded, using an initial constant quantization
parameter (QP). The coding distribution ratio is
settled by the code bit ratio.

(2) The optimal constant QP to achieve the total
number of bits assigned to the sprite is found.

(3) The remaining bits are assigned to the
foreground object.

(4) The foreground object is encoded and the
frame rate is determined.

(5) The sprite is encoded by in a low-latency
manner at the same frame rate as the
foreground.

4.2 Efficient coding using sprite transformation

Sprites can be wansformed because they are still

images. After deformation, global motion is

recalculated to regenerate the frame from the

transformed sprite. It is known that scaled-down
still images sometimes provide better quality at low
bit-rates and this is also true for sprites. Moreover,
MPEG-4 has AC/DC prediction for Intra MB
coding that effectively compresses intra-frame
images; the same is true for sprites. Low-latency
sprites are not always encoded from the left to the
right; such sprites should be rotated.

Table 1 Example of mode decision.

Start | End | First | Second | FG Final | Final
frame [frame |decision| decision| ratio | decision | shot
1 30 N N N N
31 60 N N N
A1 90 N N N
91 120 S N 0.214 N
121 | 150 S S 0.092 S S
151 | 180 S S 0.101 S
181 | 210 S S .120 S
211 | 240 S S 0.063 S S
241 | 270 S S 0.097 S
271 | 300 S S 0.106 S S
301 | 330 S S 0.093 S
331 | 360 N N N N
361 | 390 N N N

5. Coding experiment

We conducted coding experiments using the
standard video sequence “stefan” {150frames, SIF)
and “skateboard” (390frames, SIF, a skateboarder's
follow-shot with right-to-left panning camera
motion) is used, Two coding conditions were used:
15fps at 128kbps and 30fps at 3B4kbps. We
compared multimode coding to single mode
coding in which the video sequences were encoded
by VM17.0(4].

Table 1 shows an example of the coding
mode decisions made for “skateboard”. This
example does not mentjon isolated “S" explaned
section2.4. The “stefan” sequence contained only S
segments. Table 2 shows the coding results. Figure
4 plots assigned QP. Multi-mode coding yielded
lower QPs than single mode coding. Most of the
QPs for “stefan” (128kbps, 15fps) are around 31,
while multi-mode coding provide much lower QP
constantly. Table 2 shows multimode coding
achieved around 15fps in both sequences at
128kbps, but the average QPof single mode coding
is around 9. Figure 5 shows a part of the coding
images for “stefan”. From the viewpoint of image
quality, multi mode coding, in this case sprite mode,
provides better subjective visual quality than single
mode coding.

655

Table 2 Coding result

Object 128kbps 15fps 384kbps,30fps
Video
Sequence [Mode| type Ave. QP |Ave. SNR[dB]| framerate || Ave.QP |Ave. SNR[dB]| frame rate
' ifps] [fps]
FG 18.97 24.29 15.00 9.36 30.07 27.57
Mulii| BG 18.71 20.28 15.00 9,62 20.25 27.57
skateboard Norm.® 24.07 14.46 14.83 10.95 26.83 30.00
Total - 23.16 14.92 - 24.46 28.68
Single| --- 26.40 24.46 12.85 18.15 26.38 30.00
FG 17.07 26.44 15.00 8.34 31.48 30.00
Multi| BG 17.00 18.19 15.00 8.30 18.23 30.00
Stefan Norm. — -
Totat 19.38 15.00 19.52 30.00
Single| - 30.84 24.15 8.90 23.67 25.37 30.00

*Norm. : normal (rectangle) object. This type of object is normally enceded by MPEG -4 Simple Profile.

"skateboard” 128kbps, 15fps

35
10 = S SEPEA
[1 ‘%xh‘a i1 A
25 T T = V
o N L
5% [-
10 i~ Singte mode —
5 b—— Foregrund .
0 Ly T Bapkgroynd
0 50 100 150 200 250 300 350
Frame number
"stefan" 128kbps, 15f]
35 P ps
30 M’; £ 1 e
H
25 |
5 L
10 o Single mode |
5 Forreground
. , - Background
0 50 100 150 200 250 300

Frame number

Fig, 4 Assigned QPs .

6. Conclusion

In this paper, we proposed the multi-mode coding
system that fully utilizes the advantages of sprite
coding. A two-stage coding mode decision (sprite or
normal) algorithm was introduced. Modified
algorithms were introduced for global motion
estimation and sprite generation. A simple method

656

of multi video object rate control using sprites was
proposed. The multi-mode coding system achieves
higher frame rates and higher quality image than
single mode coding for the same bit rate.

S T A

Fig. 5 Final image ("stefan”). Left image produced
by multimode coding, right one produced by
conventional method. {128kbps)

References
i1l “Information technology- Coding of
audio-visual objects-Patri2:Visual Amendment

1:Visual extensions ISO/IEC 14496-2

{2] Kumi Jinzenji, Hiroshi Watanabe, Shigeki
Okada, Naoki Kobayashi, "MPEG-4 Very Low
Bit-rate Video Compression Using Sprite Coding,”
IEEE ICME' 01, TA0.02.

(3] Anthony Vetro, Huifang Sun, Yao Wang,
“MPEG-4 Rate Control for Multiple Video
Objects,” IEEE Trans. on Circuits And Systems for
Video Technology, Vol9, No.l, pp.186-199,
February 1999.

[4] “MPEG-4 Video Verification Model version
17.0,” ISO/TEC JTC1/SC29/WG11/N3515.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

