
A Novel Decoder-downloadable System for Content-oriented Coding

Naoto SHIMIZU†, Toshinori MIYAZAWA‡,

†Waseda Univ.

Graduate School of GITS

Nishiwaseda 1-3-10, Shinjuku-ku,Tokyo,Japan

Wataru KAMEYAMA†, Hiroshi WATANABE†, Hideyoshi TOMINAGA†,‡

‡Waseda Univ.

Dept. of Elec., Info. and Comm. Eng.

Okubo 3-4-1, Shinjuku-ku, Tokyo, Japan

Abstract—
In this paper, a new system architecture called decoder-

downloadable system is described. The purpose of this system is
to provide a uniform platform for the multimedia world based on
image compressions using characteristics of the contents. This sys-
tem enables dynamic decoder downloading by negotiation between
servers and clients for seamless and minimum delay playback.
This negotiation scheme is implemented by Java and CORBA
(Common Object Request Broker). Thus, servers and clients in
this system are independent from OSes and hardware specifica-
tions. This system is suitable for TV broadcasting as well as Inter-
net streaming.

We improve a decoder architecture in order to make the sys-
tem more flexible. A decoder has some functions such as bitstream
parsing, image compression algorithms (DCT, Wavelet, Motion es-
timation and so on). However, conventional decoders are mono-
lithic software. Thus, it is impossible to share parts of decoders.
The proposed method enables a module-based decoder and shar-
ing some modules among some decoders. Consequently, the flex-
ible decoder can make downloading time shorter by avoidance to
download redundant parts of decoders. It also achieves scalability
enabling this system to be used in some multimedia applications,
such as a multimedia content search system, as well as a multime-
dia player.

I. I NTRODUCTION

Discrete Cosine Transform (DCT) based coding, such as

MPEG and JPEG, has been widely used for image compres-

sion. However, DCT-based approach may not be suitable for all

kinds of images. Some types of images may be encoded effi-

ciently by a method taking the characteristics of the image con-

tent into account. We call it “Content-oriented coding scheme”.

As its example, we have been studying animation image cod-

ing [1]. From this study, an open system architecture that we

can distribute our animation image decoder on Internet Stream-

ing and TV broadcasting is desired. However, no open system

fulfilling the requirement has been reported. Thus, we imple-

ment the system called “decoder-downloadable system”. In this

paper, we present the system architecture.

In multimedia world based on Content-oriented coding

scheme, it is anticipated that the number of image compres-

sion algorithm increases. Conventional decoders are developed

as monolithic software. However, there are parts that decoders

can share. Thus, their redundancies are eliminated by realiz-

ing module-based decoders, which are composed some mod-

ules and share them among decoders. We call these module-

based decoders “flexible decoder”. Designed decoders in this

system as flexible decoder provide several advantages.

These proposal concept model is shown in Fig.1. The pro-

posed system architecture provides a new way for all multime-

dia applications to share a variety of modules and functionality

in a platform-, vendor-, and location-neutral environment.

II. D ECODER-DOWNLOADABLE SYSTEM

A. Problem of Plug-in system

Multimedia systems on the Internet, such as Microsoft Media

Player, RealPlayer, provide functions to deal with new types of

media by installing the appropriate software when it is required.

Such optionally downloaded software is called Plug-in. How-

ever, Plug-in system has problems as follows.

1) Time delay

The time delay happens when a new content starts and a

client does not have a suitable decoder, because it takes

���������
	�����

� ����	���������������� �
!��#"

$&%�'�(�)+*-,�.�) /102,3/#465#78,
9�:�);9�,

< �3��=>��#"@?A�=CBED�� =��������� �F�@!��@	G�
�H���I���#D	J�#D�K��;D��

L (+7�,
4M(+N>O�,QP�RJ*S%�'�(�)�*�,�.�) /1/�O�O�') 5�/�(�) PC9
< ���3=>��#"@?A�=CBED�� =�����#��� �F�T!��U	G�
�

�V�
"TW��#"V�

Fig. 1. Proposed concept model

additional time to download it. This interrupts seamless

playback of contents and causes a serious problem espe-

cially in case of TV broadcasting.

2) Installation problem

Plug-in system requires users a little knowledge about

image coding. As TV broadcasting has been universal

service, and Internet streaming has been same situation,

too. The system in the universal service should not expect

clients about service installation knowledge. This point

is very important for applying Content-oriented coding

scheme, because it will require more knowledge about

image coding than the conventional scheme.

3) Closed specification

The specification of Plug-in and the way to transfer Plug-

in depend on each multimedia software. There is no com-

patibility among them. Therefore, developers of decoders

are needed to create ones for each multimedia system.

Each developer of multimedia system is also urged to cre-

ate the architecture for downloading decoders.

B. Proposed system architecture

In this section, we propose the system architecture that en-

ables to download decoders dynamically and to play back with-

out delay.
The proposed system architecture is shown in Fig.2.
A client is composed of five parts, which are “Core engine”,

“Schedule management engine”, “Decoder component man-

agement engine”, “File I/O”, “User Interface”. Each interface

between them is shown as a number of circles in Fig.2. Their

details are described below.
At a server-side, there are “Content server” storing actual bit-

streams of contents, “Decoder server” storing binary codes of

the decoders and “Information server” storing information de-

scribing a profile for each content (here after called content in-

formation). To detect the corresponding content information

easily by information server, this information has a hierarchical

structure. Content information is shown in Fig.3. Each server

may be on the same machine or the different machines, which

enable to achive load balancing.
We implement a client system by using Java. The part of

media processing is developed with JMF (Java Media Frame-

work)[3]. This is because the proposed system should work in

the various environments. At the present time, it throws a little

doubt to construct the part of media processing by using Java.

Therefore, we design the system architecture in such a way that

the module for media processing depending on JMF can be de-

tached from other parts entirely. However, decoders developed

�������
�	��
	����������

������������������������������

�������� ����!����
"���# �$%���

�&�$'�#

(�)�*�+���# �$'���

,-$/.0�1�	2	3

4 ��5�����6#.0�
�������� ����!����
"���# �$%���

(3+798;:

< 4

=>����$?�;�@��������A�*$'�#

�6B��������
C���ED�FHG�=I,

J ��.0��F"K��L
	���M��
C��N

OP<Q<SR
,T<�R

71<SR
< 4
��
	�

U

V

W

X

Y

Z

[

\
]

UC^

UU

_Q`�a�bdcMeIfhgQ_jiMaAe#bj_ke�lmgkb

nTb;g�oHbjgjn

pqQr�s�tvuxw�yLz	s�qx{�|�t�}Q|�t
~T���#�����#���;�'�"����L�������0���

��|��@s-��|�th{�|�tv}Q|)t

� ���#�����#���

�d���

Fig. 2. Decoder-Downloadable System Architecture

Available servers

 server
information

 server
information

 server
information

 directory
information

 content
information

 directory
information

 content
information

1)server
 address
2)portnumber
3)protocol
4)number of
 directories
 etc

1)directory
 path
2)number of
 contents
 etc

1)content name
2)author
3)content ID
4)optimum
 decoder
 etc

 directory
information

 content
information

 content
information

 server
information

 directory
information

Fig. 3. Content information

by Java give a merit that server do not have to take care of the

type of the client operating system. They are also useful for

flexible decoder1.

CORBA (Common Object Request Broker) [4] is used to de-

fine its interface between servers and clients being independent

from the hardware specification. Moreover, the system is inde-

pendent from any transport protocol by CORBA GIOP (General

Inter-ORB Protocol). Therefore, the system can be employed

on the Internet, TV broadcasting, and mobile system and so on.

The procedure in the system is executed in the following or-

der:

(1) The scheduler management engine in the client system

starts to get the content information. It parses the in-

formation and confirms the decoder component manage-

ment engine whether the decoder has already existed in

1This detail is described in section 3.

the client’s side or not.

(2) If a client dose not have the corresponding decoder, the

scheduler management engine instructs the decoder com-

ponent management engine to get the decoder URI. De-

coder component management engine requires content

server where the decoder is stored.

(3) Information server starts to find where the requested de-

coder is stored using decoder information. It returns de-

coder URI to the client.

(4) The scheduler management engine decides when to start

downloading the decoder from decoder server and in-

structs the decoder component management engine. The

timing to give the instruction is very important, because

decoder downloading interrupt continuous media play-

back in case, such as low network bandwidth.

The role of each part in the system is as follows:

• Core engine

This part provides the implementation of media play, trick

mode and so forth. The decoders are actually installed in

this part.

• Decoder component management engine

This part manages decoders in the client’s system, queries

about what decoder is needed, downloads decoders, and

deletes decoders in the stock.

• Schedule management engine

This part controls when to start media play, to download

or to delete decoders. It instructs to each part that provides

actual above functions in timely manner.

• User interface

This part is the interface for user input.

• File I/O

This part selects a protocol based on its usage: 1) CORBA,

Sending and Receiving Content information, 2) HTTP /

FTP, Downloading the binary data of decoders, or 3) RTP

/ MPEG2-TS, Receiving media data.

Each interface in the system is described below:

interface 1: Exchanging the information about decoders.

interface 2: Exchanging the information about the contents.

interface 3: Downloading binary data of decoders.

interface 4: Downloading media data of contents.

interface 5: Downloading EPG (Electronic Program Guide)

data that is used in the client’s scheduler.

interface 6: Providing of decoder modules to Core Engine.

interface 7: Indicating when decoder’s memory load starts,

providing the information about what state the

memory load is.

interface 8: Indicating whether the decoder is added or

deleted to the users.

interface 9: Providing the information about the contents,

indicating when to start downloading the de-

coder and deleting the decoder in the client sys-

tem, confirming for existence of decoders.

interface 10: Accepting of the input information by the

users.

interface 11: Indicating the information of contents that can

be played back, choosing the contents by the

users.

C. Result of system experiment

It is important to evaluate the scheduling ability of down-

loading decoders. Thus, the relation between the number of

downloading decoders and time delay until a new content starts

should be evaluated.
The experimental parameters are as follows. In this experi-

ment we used a simulation program providing functions such

as rotation effect instead of the decoders. The special effect

programs work just like decoders in this system. The allow-

able number of them is defined as 12. The size of each de-

coder is 4.25KB. Client’s environment is CPU : Pentium III

1GHz, RAM : 256MB, OS : Windows 2000, Version of Java :

JDK1.3.1 .
Waiting time to play a content back with downloading de-

coders is evaluated by several scheduling methods, which are 1)

“no download” meaning that a client has already necessary de-

coders, 2) “parallel download” meaning that a client downloads

in parallel, 3) “serial download” meaning that a client down-

loads decoders in serial according to the order of playback. The

result is shown in Fig.4. The horizontal axis shows the num-

ber of stored decoders. The vertical axis shows the actual time

delay.
The result shows that the serial download is better than the

parallel download. The reasons are:

1. The bandwidth of the network

When there is heavy media streaming traffic, the paral-

lel download consumes more bandwidth than the serial

download. Therefore, the parallel download causes the

more delay of downloading the decoders than the serial

download.

2. The local resources

Media processing occupies processing power. In this

sense, the local resources are getting fewer by increasing

the sessions for downloading the decoders. This reduc-

tion of the local resources affects media processing.

In case of Push service such as TV broadcasting, the opti-

mum number of downloading decoders that achieves the min-

imum time delay is given by the probability that a user switch

the content, such as channel hopping. Although this probability

may obey a specific distribution, it is difficult to assume that

this probability in practice.

This probability list may be created by storing history of

changing contents. However, we have not implemented this

function yet.

III. F LEXIBLE DECODER

A. Features

Flexible decoder enables the architecture that is not treated

as the monolithic program but that is as the aggregation of the

modules that provide functions. Flexible decoder was once

considered in the standardization work in MPEG-4 Systems

[5]. MPEG-4 was designed to establish a flexible and exten-

sible architecture that provides some functions such as users’

content-based manipulation as well as the efficient compres-

sion. Although flexible decoder architecture is not included in

the standard of MPEG-4 Systems, it enables that clients con-

struct decoders by downloading only necessary modules when

a new type media content arrives. It reduces network band-

width and clients’ / servers’ resources for downloading de-

coders. Therefore, it is efficient to apply flexible decoder in

decoder-download system.

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12

local decoder

de
la

y
[m

se
c]

parallel download (8 hops)
serial download (8 hops)

serial download (0 hop)

parallel download (0 hop)

number of stored decoders

Fig. 4. The relation between the number of downloading decoders and time
delay

B. Approach for Flexible decoder

Previous work [6] shows a method for Flexible decoder. In

this work, users can change the image processing algorithms,

such as DCT and Wavelet, by developing decoders based on

the [6], while decoding process is still in progress. Separation

of decoder’s functions is achieved by three components model.

Three components model means that a decoder is separated into

1) bitstream parsing block, 2) data restorer block and 3) image

reconstrutor block shown in Fig.5. Bitsream parsing block pro-

vides parsing bitstream in accordance with the one’s syntax.

Image reconstrutor block provides each actual image decoding

algorithm. Data restorer block has a key role for the separation

between bistream parsing block and image reconstrutor block.

Data restorer block provides data alignment for image recon-

strutor block. It can be viewed as a conversion process between

them. Consequently, the existance of data restorer block en-

sures that the modification to one side will not influence the

other side.

This decoder architecture can be regarded very useful for

Flexible decoder. However, it becomes more difficult to de-

velop them in accordance with the architecture compared with

the conventional way, which means developing decoders as a

monolithic program.

C. Detach image processing from bitstream parsing

In this proposal, the modules for bitstream parsing are en-

tirely detached from the ones for image decoding. This en-

ables decoders to use various modules for the same image

decoding algorithms. For example, it is possible to select

an IDCT module suitable for clients’ hardware specification

(MMX, 3DNow!, DSP, ASIC and so forth), to share same bit-

stream parsing. Decoder-downloadable system can be used for

the various multimedia system such as the search engine [7]

as well as the media processing. This flexibility can be realized

simply by replacing the modules for image decoding algorithms

with the ones for the other processes. Client-independent de-

coder software such as JAVA is exploited to make the separation

more flexible.s

���������	��
���

��������
��

�������

��
���������
��
 !�"�#$

��
�%��&'���(��)*%+�����

��������
-,
�������

��
������.��
-,
�/�+��������!���(��
�+� !�0�-#$

Fig. 5. Flexible decoder structure

D. Proposed structure

We propose the method for separation between bitstream

parsing block and data restorer block. This is achieved by the

support of MSDL-S (MPEG4 Systems and Description Lan-

guage - Syntactic description language) and Flavor (Formal

Language for Audio-Visual Object Representation) [8].

1) MSDL-S and Flavor: MSDL-S is defined in the stan-

dard of MPEG4 Systems for description of biststream syntax

shown in Fig.6. MSDL-S is used for generating bitstream pars-

ing modules as well as describing bitstream syntax shown in

Fig.7.

Flavor is a representative MSDL-S compiler, which is proper

that the code generator instead of the compiler because Flavor

provides the only function generating standard Java and C++

source code automatically at the present time. It is possible to

simplify and speed up the development of software that pro-

cesses multimedia information by MSDL-S and Flavor. Bit-

stream parsing is required to develop the modules that deal

with the bitstream-oriented nature of the data, although general-

purpose microprocessors are strictly byte-oriented. MSDL-S

enables bit-oriented. Thus, MSDL-S provides the functions to

cope with the bitstream data easily.

2) Actual process: MSDL-S and Flavor provide only the

bitstream parsing modules with ease. Thus, decoder developers

must implement their own interfaces with data restorer block.

This approach cannot realize the fixed interface. Thus, it is im-

possible to share the bitstream parsing modules. Consequently,

we modify the Flavor to generate the base models for the data

restorer block as well as the bitstream parsing block (Fig.8).

This modification is explained as follows. A set of related data,

in other words a data layer, is represented as Class in MSDL-S.

Flavor generates each Java and C++ source code corresponding

to the data layer. Thus, we improve to enable that the base mod-

els for data restorer block corresponding to the data layer is cre-

ated at the same time. In short, MSDL-S source file is used as

IDL (Interface Definition Language) for the data restorer block

class single_pixel {

int(8) pixel;

}

Fig. 6. Representation with MSDL-S

���������
	���
��� �������	
��������

��� �"!�#$��%&�
'(��)*�+,�
���*-.�0/���
'*1*�.����2
3 ��4���5�(6

7 '98;:=<>'
'(��)*�+?�
�@�*-.�

Fig. 7. Generate bitstream parsing from MSDL-S Source code

���������
	���
�����������
� ��������
�������

�! " $#&%('*)+' � �,��-���.�������
/ �, �10�2�3 '546��'7 � � 298

�: " $#&%;'*)+' � �,��-���.�<�����
/ �,=��' 3 '�>� �?3 �,>��A@�	
���*B

C&DFEAG*H,I9J�K

Fig. 8. Proposed flexible decoder generator

modules as well as the bitstream parsing modules. Each de-

coder developer implements the data restorer block modules for

own use, while these decoders share the same bitstream parsing

modules.

IV. CONCLUSION

In this paper, we proposed a new system architecture for

content-oriented coding scheme. This system enables dy-

namic decoder downloading by negotiation between clients and

servers. Therefore, clients can decode the contents without the

knowledge about image coding scheme and can play back me-

dia contents seamlessly. This system is superior for the porta-

bility, because it is developed by Java and CORBA, It is ad-

dressed that development decoders as flexible decoder are use-

ful for decoder-downloadable system. The method to separate

bitstream parsing from the other processes using MSDL-S is

also proposed.

REFERENCES

[1] O. Nakagami, T. Miyazawa, H. Watanabe, H. Tominaga, “A Study on
two-layer coding for animation images,” IEEE International Conference
on Multimedia Expo (ICME) 2002, August 2002.

[2] D. Wu, T. Hou, W. Zhu, Y.-Q. Zhang, J. M. Peha, “Streaming Video over
the Internet: Approaches and Directions,” IEEE Trans. on Circuits and
Systems for Video Technology, February 2001.

[3] Sun Microsystems, “JavaTM Media Framework API,”
http://java.sun.com/products/java-media/jmf/

[4] Object Management Group, “CORBA/IIOP Specifications,”
http://www.omg.org/technology/documents/

[5] ISO/IEC JTC1/SC29/WG11, “ISO/IEC 14496-1, Information technology
- Coding of audio-visual objects - Part 1: Systems,” 2000.

[6] H. Arakawa, T. Maeda, M. Etoh, “Software architecture for flexible and
extensible image decoding,” Signal Processing Image Communication 10,
pp.235-248, 1997.

[7] J. R. Smith and S. F. Chang, “VisualSEEk: a Fully Automated Content-
based Image Query System, ” In Proceedings of the 1996 ACM Multime-
dia Conference, pages 87-98, Boston, MA, 1996.

[8] A. Elftheriadis, “Flavor: A Language for Media Representation,” ACM
Multimedia 97 Conference, Seattle, WA, November 1997.

[9] ISO/IEC JTC1/SC29/WG11, “ISO/IEC 13818-2, Information technology
- Generic coding of moving pictures and associated audio information:
Video,” 1996.

