
AUTOMATIC TWO-LAYER VIDEO OBJECT PLANE
GENERATION SCHEME AND ITS APPLICATION TO

MPEG-4 VIDEO CODING

Kumi Jinzenji, Shigeki Okada, Hiroshi Watanabe, Naoki Kobayashi

NTT Cyber Space Labs.
1-1 Hikari-no-oka Yokosuka-Shi

Kanagawa, 239-0847 JAPAN
E-mail: {kumi, shige, hiroshi, kobayashi}@nttvdt.hil.ntt.co.jp

ABSTRACT

The new video coding standard MPEG-4 provides
content-based functionality and low bit-rate video compression.
We focused on the “sprite coding” supported MPEG-4 Version 1
Main profile in order to achieve “VHS quality video on 2B
(128kbps)” for narrow-band transmission such as the Internet.
Automatic VOP (Video Object Plane) generation technologies are
being studied as one of the most important issues of MPEG-4
object coding. This paper proposes a two-layer VOP generation
scheme with some core algorithms such as GME (Global Motion
Estimation), foreground moving object extraction, and background
sprite generation. This paper also describes a shape information
reduction method for foreground objects. Using this method, shape
information is compressed by 90%. Experiments are conducted on
VOP generation and video coding with MPEG-4. Coding
efficiency is 3-4 times higher than that of typical existing video
coding schemes at the same subjective image quality.

1. INTRODUCTION

A new standard called MPEG-4 is currently being
developed [1]. It will provide content-based functionality and very
low bit-rate video compression. We are studying very low bit-rate
video compression to achieve VHS quality on 2B (128kbps) for
narrow-band use such as Internet applications. One solution can be
found in the “Sprite Coding” supported in the MPEG-4 Version 1
Main profile. Sprite coding is extremely effective for video
sequences with camera operation [2-4]. Some studies have
introduced automatic sprite generation schemes, but they did not
discuss foreground object extraction. For the background content-
based video representation, object segmentation is the core
technology for object-based video representation. Most existing
technologies offer only manual/semi-automatic video segmentation
[5][6]. Fully automatic video sequence decomposition to create
VOP has not been achieved. Some studies offered automatic video
object segmentation, but they place tight limits on the types of video
sequences that are supported. Moreover, multiple object extraction
and their correspondence over several frames remain unrealized
[7-9].

This paper presents a new algorithm that can automatically
generate VOPs and describes video coding experiments that use
the MPEG-4 Version 1 Main profile . To prevent the multiple object

correspondence problem, the two-layer VOP is proposed. The
two-layer VOP consists of the foreground moving object and the
background sprite. The “foreground object” covers all regions not
identified as the background. Consider the example of a “soccer
game”, the foreground object covers players, the ball and any kind
of moving object in the sequence. (Most existing technologies treat
these small objects as independent foreground objects.) This paper
also proposes original technologies, such as GME, background
sprite generation, and foreground moving object extraction. The
GME algorithm uses a four-parameter affine model suitable for
camera operation. GM is calculated from the characteristics of the
motion vector distribution in the feature space. Clusters in the
feature space are examined to identify the camera operation, and
the most prevalent camera operation is selected as GM. This is
important in generating the sprite, because the sprite can become
blurred and distorted if non-camera motion is selected as GM. To
generate a clear sprite, the temporal median and overwriting
methods are used. The foreground object is extracted by using the
difference image between the original image and the image
extracted from the sprite. It provides robust against GM error. This
paper also describes a shape information reduction method for the
foreground object. The moving objects automatically extracted do
not obtain smooth boundaries and also contain many small regions
that increase the volume of shape information. A video coding
experiment using a two-layer VOP generated by proposed the
algorithm is conducted. A comparison is made with a typical coding
scheme from the viewpoints of subjective image quality and coding
efficiency.

Fig.1 Concept of two-layer VOP: foreground moving object
and background sprite.

VOP1: Foreground moving

Automatic VOP
Definition

VOP0: Background

Input Bitstream

VOP 1
Decoding

Output

VOP 0
Decoding

Bitstream Composition

VOP 0
Encoding

VOP 1
Encoding

M
U

X

D
E

M
U

X

III-606

0-7803-5482-6/99/$10.00 ©2000 IEEE

ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

Section 2 covers automatic two-layer VOP generation schemes
including GME, sprite generation, and object extraction. Video
coding experiments are described in Section 3. Section 4 concludes
this paper.

2. AUTOMATIC TWO-LAYER VOP
GENERATION

2.1 Two-layer Video Object

Figure 1 shows the concept of the two-layer VOP. This
paper eliminates the issue of object correspondence among frames
by treating all moving object regions as the foreground object.

Figure 2 shows a flowchart of the automatic two-layer
VOP generation algorithm that consists of four parts: GME,
background sprite generation, foreground object extraction and
macro-block approximation of foreground shape.

2.2 GME for Sprite Generation

For sprite generation, GM should reflect only camera
operation. This is the most significant difference from the typical
GME algorithm which is tries to minimize the error between the
original image and the predicted image with GM. To avoid non-
camera movement (outlier), two techniques are proposed for GME:
use of motion vector distribution in the feature space and cluster
candidate selection. Figure 3 outlines the GME algorithm.

Camera motion can be described using the Hermart transform
(four parameters affine) as:

1+′=

+

′−

′
=

aa

d

c

y

x

ab

ba

v

u
(1)

where (u,v) is the motion vector calculated in each macro-
block, (x,y) is the position of the pixel, and {a,a’,b,c,d} is the set of
GM parameters to be calculated. a and a’ are scaling parameters,
b denotes rotation, c and d denote translation.

First, the motion vector for each macro-block is calculated
using the block-matching algorithm. Figure 4 shows the distribution
of the motion vectors and their partial derivatives in the feature
space. Motion vector distribution should strongly reflect camera
operation.

Partial derivatives (see equation (2) and (3)) of the motion
vectors are calculated for each macro-block.

a
y

v

x

u ′≡
∂
∂

=
∂
∂

(2)

b
x

v

y

u
≡−=

∂
∂

∂
∂

(3)

Each partial derivative creates a significant cluster on a line
written by equations (2) and (3) in each feature space (see Figure
4-(a) and (b)). Here, all blocks with smooth intensity gradation are
removed from the target blocks in the GME process, because such
motion vectors are not accurate and often concentrate around zero.
The centroid of each cluster yields scaling and rotation parameters.
In this way, a’and b are detected.

Equation (1) can be transformed into

′−

′
−

=

y

x

ab

ba

v

u

d

c
. (4)

Translation vectors in each macro-block are calculated using
Equation (4). The translation vectors create several clusters in the
feature space. These centroids of the clusters are the candidates of
translation parameters c and d. Here, suppose that the translation
vector ()outlieroutlier dc , reflects outlier motion, while

()cameracamera dc , is camera motion. The absolute difference at each

pixel between the original and predicted images using a certain
translation parameter candidate is calculated. The number of pixels
whose value exceeds a certain threshold Th is calculated. If idealp

is the pixel number for ideal camera motion, while outlierp is for

outlier motion. idealp is always larger than any outlierp . This

principle can be used for the cluster candidate selection needed for
translation parameter detection. First, an absolute difference image
between the original image and the predicted image is calculated
for each candidate to examine. Then, in each candidate, the
number of pixels in the absolute difference image less than a
certain threshold Th is counted. The centroid having the largest
number of pixels is selected as the translation parameter. Here,
threshold Th is experimentally determined. These detected

Original
 Image

Motion vector calculation

Global motion estimation

Provisional sprite generation

Foreground object extraction

Background sprite generation

Global
motion

Background sprite Foreground object

Macro-block
approximation

Fig. 2 Flowchart of two-layer VOP generation.

Fig. 3 Overview of algorithm for GME.

Calculate scaling parameters Calculate rotation parameters

Calculate translation vectors

Transform scaling, rotation and translation parameters
into GM from base frame

GM

Examine translation clusters

Cluster translation vectors

Motion vectors

Calculate partial derivatives

∂
∂

∂
∂

y

v

x

u
,

∂
∂

∂
∂

y

u

x

v
,

()vu,

III-607

parameters {a,a’,b,c,d} are then transformed into GM from a
preset base frame.

2.3 Background Sprite Generation

All frames are aligned to the basic coordinate of the base
frame using the GM calculated by the proposed algorithm in the
previous section. The pixel intensity of each coordinate is
interpolated with the nearest four points in the original frame.

We note that there are several integration methods, such as
temporal average, temporal median, and over-writing. From the
viewpoint of subjective sprite quality, the over-writing method is the
best. However, it cannot create a sprite for the entire background,
because the moving objects can not be eliminated on the top frame.
The median method is free of the moving object problem when the
pixels of moving objects are fewer than half of the temporally
aligned pixels. If that condition is fulfilled, the median method can
create the entire background sprite. Accordingly, we use the
temporal median and over-writing as integration methods.

To create a clear sprite, we use three steps: provisional
sprite generation, foreground object extraction, and final sprite
generation. First, aligned frames are integrated to form a
provisional sprite using the temporal median method, so that moving
objects are eliminated from the sprite. Second, background images
are generated using differentiation of the provisional sprite and the
original image as is explained in the next section. The background
images have no moving objects. Aligned background images are
integrated to form the final sprite by overwriting.

2.4 Foreground Moving Object Extraction

Figure 5 overviews foreground object extraction. First, a
GM image is extracted from the provisional sprite with GM. Next,
the absolute difference image is created from the GM image and
original image. Next, the absolute difference image is divided into
foreground image and background image using a certain threshold.
The final sprite is generated from the background images, while
foreground images are approximated into macro-blocks to reduce
the volume of shape information.

2.5 Shape Information Reduction

The initial foreground image has complex shape and small
regions that occupy a large volume of shape information. Moreover,
shape search area is limited to plus-minus 16 pixels so that most
macro-blocks are coded in the INTRA mode. Two types of shape
coding modes are provided in MPEG-4; lossy and lossless. The
shape in the most lossy mode is the “macro-block” itself. When the
foreground object pixels occupy more than half the macro-block,
the entire macro-block is filled with “255”, otherwise with “0”.
Here, “255” value is given to the foreground pixel, while “0” value
is given to the background pixel. The most lossy shape compresses
the data size by 80-90 % compared to the information created by
the automatically extracted object’s “original” lossless shape.

The most lossy shape approximation yields the highest level
of the compression, but it cause shape erosion that degrades
subjective image quality. Accordingly, we propose another macro-
block-based approximation algorithm to reduce shape information
without degrading image quality (see Figure 6). From several
experiments, we found that the foreground area should be less than
10 % of the frame if the proposed sprite coding method is to be
more efficient than existing coding schemes. Accordingly, the
algorithm is controlled by setting the foreground area ratio. Two
types of macro-block-based approximation are proposed. First,
when a macro-block contains more than th1 pixels, the value “255”
is given to all pixels in the macro-block. Second, if any of the
surrounding eight macro-blocks are filled with 255 value pixels, and
the target macro-block has more than the2 (th2<th1) pixels, all
pixels in the target macro-block are given the value of 255. These
two thresholds are gradually increased till the foreground rate is
less than 10 %. Finally, the macro-block approximated foreground
shape is coded using the lossless mode. Here, the thresholds Th1
and Th2 are experimentally determined.

3. MPEG-4 Visual Coding Experiment

We conducted several coding experiments using MPEG-4
Version1 Main Profile and video sequences with camera operation.
Two types of coding mode were compared, sprite mode and
rectangle mode, from the viewpoints of subjective image quality
and coding efficiency. The rectangle mode is the basic of many
existing coding schemes such as H.26X. Coding conditions were
QP=12, SIF, 30 frames/sec.

Partial derivatives by
scaling

y

v

∂

∂

x

u

∂

∂

x

u

y

v

∂
∂

=
∂
∂

Partial derivatives by rotation

y

u

∂

∂

x

v

∂

∂

x

v

y

u

∂
∂

−=
∂
∂

Outliers
Outliers

Translation cluster candidates

v

u

(a) Scaling (b) Rotation

(c) Translation

Fig. 4 Partial derivatives distribution of motion vectors.

GM Provisional sprite

Extract Differentiate Threshold

Foreground
image

Background
image

Macro-block
approximation

Sprite
generation

Original image

Fig. 5 Overview of foreground object extraction.

III-608

Figure 7 shows coding results. Figure 8 shows examples
of background sprite, foreground object, and a composed frame.
Note that “bits per second” is written in the graph to compare
sprite and rectangle modes. The coding efficiency of the sprite
mode is 3-4 times higher than that of the rectangle mode. The
sprite mode image has almost the same quality as the rectangle
mode image at the same QP. The new method provides enough
compression and image quality to allow “VHS on 2B”.

We must note that these experiments assumed that
camera motion had little zoom operation, so that a background
image quality, which is extracted from the sprite, is supposed to
“subjectively” equal to the original image. As an objective
measurement, PSNR of the normal mode is apparently much
better than sprite mode.

4. CONCLUSION

We focused on the “sprite coding” supported MPEG-4
Version 1 Main profile to achieve very low bit-rate video
compression. This paper proposed a two-layer VOP generation
scheme with core algorithms such as GME, foreground moving
object extraction, and background sprite generation. This paper
also described a shape information reduction method to handle
moving objects. Using this method, shape information is
compressed by 80-90 %. Experiments on VOP generation and
video coding were conducted using MPEG-4. We found that the
proposed two-layer VOP generation method yields a coding
efficiency that is 3-4 times higher than those typical existing video
coding schemes at the same subjective image quality. In the future,
we will apply the proposed scheme to realize the “VHS quality
video on 2B” service for narrow-band transmission infrastructures
such as the Internet.

AKNOWLEGDEMENT

The authors wish to thank Ms Noriko Yonehara for her
assistance during the computer simulations.

REFERENCES

[1] Final Draft of International Standard, ISO/IEC 14496-2.

[2] M. Irani, S. Hsu, and P. Anandan, “Video Compression Using
Mosaic Representation,” Signal Processing: Image
Communication, Vol. 7, pp. 529-552, 1995.

[3] K. Jinzenji, H. Watanabe, N. Kobayashi, “ Global Motion
Estimation for Static Sprite Production and Its Application to
Video Coding,” IEEE ISPACS‘98, pp.328-332, November
1998.

[4] K. Jinzenji, S. Takamura, H. Watanabe, N. Kobayashi,
“Automatic VOP Production Scheme for Very Low Bit Rate
Coding,” PCS’99, pp.299-302, 1999.

[5] M. Kass, A. Witikin, D. Terzopoulos, “SNAKES: Active
Contour Models,” Proc. 1st ICCV, pp.259-268, 1987.

[6] J. G. Choi, S. Lee, S. Kim, “Spatio-Temporal Video
Segmentation Using a Joint Similarity Measure,” IEEE Trans.
on CSVT, Vol. 7, No. 2, April 1997.

[7] A. Neri, S. Colonnese, G. Russo, “Automatic Moving Objects
and Background Segmentation by Means of Higher Order
Statistics,” IEEE ISCAS’97, June 1997.

[8] R. Mech, M. Wollborn, “A Noise Robust Method for
Segmentation of Moving Objects in Video Sequence,” IEEE
ICASSP’97, April 1997.

[9] T.Meier, K.N. Ngan, “Automatic Segmentation of Moving
Objects for Video Object Plane Generation,” IEEE Trans. on
CSVT, Vol. 8, No. 5, September 1998.

Fig.8 Coding image examples(Horserace). A part of
sprite(upper), foreground object(lower left), and composed
image(lower right).

Fig. 7 Coding results with MPEG-4.

0
100
200
300
400
500
600
700
800
900

Horserase Soccer Athlete Stefan Board

[k
bi

ts
 p

er
 s

ec
.] Sprite mode

Rectangle mode

Initialize threshold Th1and Th2

First approximate to macro-block

Second approximate to macro-block

Calculate foreground rate Rf

If Rf>Rmax
Yes

No

Th2=Th1
Th1=Th1+d

Macro-block
approximated
foreground object

Fig. 6 Macro-block approximation for shape information.

III-609

