符号理論•暗号理論

- No.7 有限体と拡大体 -

渡辺 裕

Coding Theory / Cryptography

- No.7 Finite Field and Extension Field -

Hiroshi Watanabe

群

- 半群の定義
 - 集合G, 算法@のとき代数系<G,@>が
 - 算法@について閉じている
 - 算法@に対して結合律が成立する
 - 閉じているとは?
 - 集合Gの元素x, yに関して算法@を適用した演算結果 (x@y)も集合Gに属する
 - 結合律とは?
 - 集合Gの元素x,y,zに対して, (x@y)@z=x@(y@z)が成り立つ

Group

- Definition of Semi-group
 - For Set "G", operation "@", Algebra <G,@> is called "Semi-group" when the followings hold
 - Close for operation "@"
 - Associative law holds in operation "@"
 - What is closed?
 - For element x, y in set G, result of an operation (x@y) also blongs to G
 - What is associative law?
 - For elements x,y,z in set G, (x@y)@z=x@(y@z)

群 (2)

- 群の定義
 - 半群かつ下記の条件を満足する群
 - 単位元素eが存在する

$$x@e=x$$

● 逆元素<u>x</u>が存在する

$$x@\underline{x}=e$$

- 可換群の定義
 - 算法@が可換である群,アーベル群とも呼ばれる
 - x@y=y@x

Group (2)

- Definition of Group
 - Semi-group that satisfies the following
 - Identity element "e" exists

$$x@e=x$$

• Inverse element <u>x</u> exists

$$x@\underline{x}=e$$

- Definition of Commutative group
 - Commutative for operation "@", sometimes called "Abelian group"
 - x@y=y@x

環

- 環の定義
 - 代数系<G,+,*>において
 - <G,+>は可換群
 - <G,*>は半群
 - 算法*は算法+に関して,右側および左側分配的
 - 右側分配的とは?
 - (x+y)*z=(x*z)+(y*z)
 - 左側分配的とは?
 - $z^*(x+y)=(z^*x)+(z^*y)$

Ring

- Definition of Ring
 - At algebra <G,+,*>, Ring satisfies follows
 - <G,+> is Commutative Group
 - <G,*> is Semi-group
 - Operation "*" is right and left distributive to operation "+"
 - What is right distributive?
 - (x+y)*z=(x*z)+(y*z)
 - What is left distributive?
 - $z^*(x+y)=(z^*x)+(z^*y)$

環(2)

■ 注意

- 環<G,+,*>における可換群<G,+>を加群と呼ぶ
- 加群における単位元素を,零元素と呼び,0で表す
- <G,*>は半群であるから単位元素があるとは限らない
 - 単位元素が存在するとき,単位環と呼ぶ
 - <G,*>が可換であるとき,この環を可換環と呼ぶ
- 環の算法は通常の代数と矛盾しない

Ring (2)

Note

- Commutative Group <G,+> at Ring <G,+,*> is called "G-module"
- Additive identity element at Commutative Group <G,+> is called "null element," and noted as "0"
- <G,*> is Semi-group. Thus, there may not be "identity element."
 - If identity element exists, it is called "Ring with identity."
 - If <G,*> is commutative, this Ring is called "Commutative Ring."
- Operation in Ring does not contradict to the normal algebra.

環 (3)

- 環の例 <Z(6), +(mod N), *(mod N)>
 - <Z(6), +(mod N)> は閉じている, 結合律が成立, 算法が可換
 - 単位元素が存在 0+i=i+0=i for i=0,1,2,3,4,5
 - 逆元素が存在 i+(6-i)=(6-i)+i=0 for i=0,1,2,3,4,5
 - <Z(6), *(mod N)> は閉じている, 結合律が成立, 算法が可換
 - 単位元素が存在 1*i=i*1=i for i=0,1,2,3,4,5
 - 逆元素が存在

Ring (3)

- Example: $\langle Z(N), + (\text{mod } N), * (\text{mod } N) \rangle$
 - <Z(6), +(mod 6)> is closed, associative, commutative
 - Identity element exists
 0+i=i+0=i for i=0,1,2,3,4,5
 - Inverse elements exist

$$i+(6-i)=(6-i)+i=0$$
 for $i=0,1,2,3,4,5$

- <Z(6), *(mod 6)> is closed, associative, commutative
 - Identity element exists
 1*i=i*1=i for i=0,1,2,3,4,5
 - Inverse elements exist

問題

■ 環において, i*j=0 (i,j≠0)が成立するとき, iとjはお互いに零因子の関係にあるという. ところで, <G(N), +(mod N), *(mod N)>において, Nが素数の場合には零因子が存在するかどうかを示せ.

Quiz

When i*j=0 (i,j $\neq 0$) holds at Ring, i and j are called "zero divisor" each other. Show the existence of "zero divisor" when N is a prime number at Ring <G(N), +(mod N), *(mod N)>.

体

- 体の定義
 - 環<R,+,*>において, 0以外のすべての元素が可逆元素であるとき, この環を体という
 - 乗法において可換である体を可換体という
 - Q: 有理数全体, R: 実数全体, C: 複素数全体に対して, 有理数体<Q,+,*>, 実数体<R,+,*>, 複素数体<C,+,*>は可換体
 - Rの大きさを代数系の位数という

Field

- Definition of Field
 - If all elements except for 0 are inverse elements,
 this Ring <R,+,*> is called "Field"
 - If <R,*> is commutative, the field is called "Commutative Field"
 - For Q: Rational number, R: Real number, C: Complex number, Rational number field<Q,+,*>, Real number field<R,+,*>, Complex number field<C,+,*> are commutative field
 - Size of R is called "Order" in algebra

整数環

- イデアル,剰余類,剰余類環
 - イデアルIとは環Rの部分集合で,次の性質を満たす
 - IはRの加法に関する部分群である
 - Iの任意の元aとRの任意の元rに対して、ar及びraはIに属する
 - Ex. 0及び正負の整数全体の集合は環をなす. 部分集合として 0を含む3の倍数はイデアルとなる. イデアルは加法に関しては 部分群であるから, 環RをIによって剰余類展開できる.
 - $I=\{0\}: 0, 3, -3, 6, -6, 9, -9, ...$
 - 剰余類{1}: 1, 4, -2, 7, -5, 10, -8, ...
 - 剰余類{2}: 2, 5, -1, 8, -4, 11, -7, ...

Integer Ring

- Ideal, Residue Class, Residue Class Ring
 - Ideal "I" is a subset or Ring "R" satisfies follows
 - I is sub-group of "R" with regard to addition
 - For $a \in I$ and $r \in R$, $ar \in I$, $ra \in I$
 - Ex. Positive and negative integer and 0 are Ring.
 Multiple number of 3 including 0 as a sub-group are ideal. Ideal is sub-group with regard to addition, thus, Ring "R" can be expanded to Residue Class Ring.
 - $I=\{0\}: 0, 3, -3, 6, -6, 9, -9, ...$
 - Residue class{1}: 1, 4, -2, 7, -5, 10, -8, ...
 - Residue class{2}: 2, 5, -1, 8, -4, 11, -7, ...

整数環 (2)

- 整数環のイデアルと剰余類環
 - 整数環においてある部分集合がイデアルであるための必要か つ十分条件はその部分集合がある整数のすべての倍数からな る
 - 十分条件は明らか
 - 必要条件の証明はユークリッドの整除法による. 整数a, b に対して次式を満たす商qと剰余rが一意に定まる. a=bq+r ($0 \le r < |b|$) このとき整数r, sの最大公約数dが必ず d=ar+bsの形に書ける. rをイデアル中の正の最小の整数とし, sをイデアル中の他の任意の整数とすると, 最大公約数dは d=ar+bsから $r \in I$, $s \in I$ から $d \in I$ となる. dはrの約数だから $d \le r$, しかしrはイデアル中の正の最小の整数だからr<クえにr=d. イデアルの任意の元sは最小元rの倍数.

Integer Ring(2)

- Ideal of Integer Ring and Residue Class Ring
 - A necessary and sufficient condition for that a subset is ideal at Integer Ring, is that the subset consists of multiple numbers of a certain integer number
 - Sufficient condition is clear
 - Necessary condition is proved by Euclidean division algorithm. For integer a, b, quotion q and residual r are uniquely determined a=bq+r (0≤r<|b|) in this case, greatest common divisor d can be written by d=ar+bs. Let r be the smallest positive integer in ideal, s be other integer in ideal, GCD d∈I because r∈I, s∈I from d=ar+bs. d is a divisor of r. Thus, d ≤r, but r is the smallest integer in ideal. Thus, r<d, r=d. Therefore, an element s of ideal is a multiple number of the minimum element r.

整数環 (3)

- 主イデアル(単項イデアル): 環Rの一つの元の倍数全体よりなるイデアル
 - 環のどのイデアルも主イデアルである環を, 主イデアル環(単項 イデアル環)とよぶ
 - 整数rの整数倍の全体からなるイデアルを(r)とかく. (r)の剰余 類が作る剰余類環をrを法とする整数環とよぶ
- 整数rを法とする整数環(rを法とする整数の剰余類環)が体をなすための必要十分条件は、rが素数であることである
- 素数pを法とする整数環が形成する体を, 位数pの素体, あるいは p個の元をもつガロア体または有限体とよび, GF(p)であらわす

Integer Ring (3)

- Principal Ideal: Ideal consists of multiple numbers of one element in ring R
 - A ring is called principal ideal ring if any ideal in Ring is principal ideal
 - Ideal is noted as (r) if it consists of multiple of integer r.
 Residue class ring created by residue class of (r) is called integer ring with modulo r
- A necessary and sufficient condition for that Integer Ring (residue class ring with modulo r) becomes field is that r is a prime number
- Field, in which integer ring creates with modulo prime number p, is called Galois Field having order p, Noted GF(p)

有限体

- 有限体とは?
 - 加算と乗算の結果が有限個の元からなる
 - ガロア体とも呼ぶ
 - GF(q)で表す
 - qを位数を呼ぶ
 - 有限体は位数qが素数あるいはそのべき乗のときに成り立つ

Finite Field

- What is finite field?
 - Addition and multiplication result in finite number of element
 - Finite field is also called "Galois field"
 - Represented by GF(q)
 - "q" is called "order"
 - Finite field exists when order q is prime number or its power

有限体 (2)

- 有限体の例
 - GF(3) mod3 の演算, 逆元の存在が必要

+	0	1	2	X	-X
0	0	1	2	0	0
1	1	2	0	1	2
2	2	0	1	2	1

X	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

X	X ⁻¹
0	-
1	1
2	2

Finite Field (2)

- Example of finite field
 - GF(3) mod3 operation, needs existence of inverse element

+	0	1	2	
0	0	1	2	
1	1	2	0	
2	2	0	1	

X	-X
0	0
1	2
2	1

Χ	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Χ	X ⁻¹
0	-
1	1
2	2

多項式環のイデアルと剰余類

- 多項式環と規約多項式
 - 体Fの元を係数とする未知数xの多項式F(x)を,体Fの上の多項式とよぶ
 - $F(x)=f_0+f_1x+f_2x^2+...+f_nx^n$ $f_0, f_1, f_2, ..., f_n \in F$
 - 非零の係数を有するxの最高次数を多項式の次数という. 最高 次数の係数が1の多項式をモニック多項式とよぶ
- 既約多項式
 - C(x)=A(X)B(x)
 割り切れるとき A(x), B(x)はC(x)の因数
 多項式の次数がnで, 次数n-1以下のいかなる多項式でも
 割り切れないときに, 既約多項式とよぶ

Ideal of Polynomial Ring and Residue Class

- Polynomial Ring and Irreducible polynomial
 - Polynomial on Field F is defined as follows
 - $F(x)=f_0+f_1x+f_2x^2+...+f_nx^n$ $f_0, f_1, f_2, ..., f_n \in F$
 - The highest n of the nonzero f is called order. If the number for highest order is 1, it is called monic polynomial
- Irreducible polynomial
 - C(x)=A(X)B(x)

If divisible, A(x), B(x) is a factor of C(x)

It is called irreducible when polynomial order is n, and cannot be divided by any polynomial with order less than n-1

多項式環のイデアルと剰余類(2)

- ユークリッドの整除法の拡張
 - A(x)=B(x)Q(x)+R(x)
 - Q(x): 商多項式
 - R(x): 剰余多項式
- 多項式環のイデアル
 - 多項式環において, ある部分集合がイデアルであるための必要かつ十分条件は, その部分集合がある多項式のすべての倍数(多項式倍)からなることである
 - 多項式環は主イデアル環
 - 多項式環のイデアルは非零の最小次数のモニック多項式
 - そのイデアルに属する多項式はすべてのこのモニック多項式(生成多項式とよばれる)の倍数

Ideal of Polynomial Ring and Residual Class (2)

- Extension of Euclidean division algorithm
 - A(x)=B(x)Q(x)+R(x)
 - Q(x): quotient polynomial
 - R(x): Residue polynomial
- Ideal of polynomial ring
 - At polynomial ring, a necessary and sufficient condition of that subset is ideal, is that they all are multiple of one polynomial.
 - Polynomial ring is principal ideal ring
 - Ideal of polynomial ring is nonzero least order monic polynomial
 - All polynomials are multiples of monic polynomial

問題

- GF(2)の多項式全体Rを示せ
 - 低次の項のみ R={0, 1, x, x+1, x², x²+1, x²+x, x²+x+1, x³, x³+x², x³+x, x³+x²+x, x³+x²+x+1, ... }
- F(x)= x²+1の倍数の多項式を示せ
 - $I = \{0, x^2+1, x(x^2+1), (x+1)(x^2+1), x^2(x^2+1), (x^2+1)(x^2+1), (x^2+x+1)(x^2+1),\}$ = $\{0, x^2+1, x^3+x^2, x^3+x^2+x+1, x^4+x^2, ...\}$
 - これはイデアルか?

Quiz

- Show all element of R which is polynomials on GF(2)
 - Only low term $R = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1, x^3, x^3+x^2, x^3+x, x^3+x^2+x, x^3+x^2+x+1, ...\}$
- Show multiple polynomials of $F(x) = x^2 + 1$
 - $I = \{0, x^2+1, x(x^2+1), (x+1)(x^2+1), x^2(x^2+1), (x^2+1)(x^2+1), (x^2+x+1)(x^2+1),\}$ = $\{0, x^2+1, x^3+x^2, x^3+x^2+x+1, x^4+x^2, ...\}$
 - Is this Ideal?

多項式環の剰余類環

- GF(2)において $F(x) = x^2 + 1$ はイデアルIの最小次数のモニック多項式
- F(x)で割ったときの剰余によりRは4種類に分類される
 - {0}: イデアルそのもの, {1}, {x}, {x+1}
- 剰余類環の加算と乗算

+	{0}	{1}	{x}	{x+1}
{0}	{0}	{1}	{x}	{x+1}
{1}	{1}	{0}	{x+1}	{x}
{x}	{x}	{x+1}	{0}	{1}
{x+1}	{x+1}	{x}	{1}	{0}

Χ	{0}	{1}	{x}	{x+1}
{0}	{0}	{0}	{0}	{0}
{1}	{0}	{1}	{x}	{x+1}
{x}	{0}	{x}	{1}	{x+1}
{x+1}	{0}	{x+1}	{x+1}	{0}

Residue Class Ring for Polynomial Ring

- $F(x)=x^2+1$ is the least order monic polynomial at GF(2)
- Residue divided by F(x) is classified into 4 groups
 - {0}: Ideal itself, {1}, {x}, {x+1}
- Addition and multiplication of residual class ring

+	{0}	{1}	{x}	{x+1}
{0}	{0}	{1}	{x}	{x+1}
{1}	{1}	{0}	{x+1}	{x}
{x}	{x}	{x+1}	{0}	{1}
{x+1}	{x+1}	{x}	{1}	{0}

Χ	{0}	{1}	{x}	{x+1}
{0}	{0}	{0}	{0}	{0}
{1}	{0}	{1}	{x}	{x+1}
{x}	{0}	{x}	{1}	{x+1}
{x+1}	{0}	{x+1}	{x+1}	{0}

ベクトル表現

■ 多項式環の剰余類のベクトル表現

剰余類環	線形結合	ベクトル表現
{0}	0S+0	(0 0)
{1}	0S+1	(0 1)
{x}	1S+0	(10)
$\{x+1\}$	1S+1	(1 1)

Vector Representation

Vector representation for polynomial ring

剰余類環	線形結合	ベクトル表現
{0}	0S+0	(0 0)
{1}	0S+1	(0 1)
{x}	1S+0	(10)
{x+1}	1S+1	(1 1)

多項式環の剰余類環 (2)

- GF(2)におけるF(x)=x⁴+1を法とする多項式の代数系
 - R={0}, {1}, {x}, {x+1}, {x²}, {x²+1}, {x²+x}, {x²+x+1}, {x³}, {x³+1}, {x³+x}, {x³+x+1}, {x³+x²+x+1}, {x³+x²+x}, {x³+x²+x+1}
- 環を形成
 - 加法の例
 - $\{x^2\}+\{x^2+1\}=\{1\}$
 - $\{x^3\}+\{x^3+x^2+1\}=\{x^2+1\}$
 - 乗法の例
 - $\{x^2\}$ $\{x^2+1\}=\{x^4+x^2\}=\{x^2+1\}$
 - $\{x^3\}\{x^3+x^2+1\}=\{x^6+x^5+x^3\}=\{x^2+x+x^3\}$

Residual Class Ring for Polynomial Ring (2)

- Polynomial algebra with modulo F(x)=x4+1 at GF(2)
 - R={0}, {1}, {x}, {x+1}, {x²}, {x²+1}, {x²+x}, {x²+x+1}, {x³}, {x³+x}, {x³+x+1}, {x³+x+1}, {x³+x+1}, {x³+x+1}, {x³+x²+x+1}
- Generate Ring
 - Example of addition
 - $\{x^2\}+\{x^2+1\}=\{1\}$
 - $\{x^3\}+\{x^3+x^2+1\}=\{x^2+1\}$
 - Example of multiplication
 - $\{x^2\}$ $\{x^2+1\}=\{x^4+x^2\}=\{x^2+1\}$
 - $\{x^3\}\{x^3+x^2+1\}=\{x^6+x^5+x^3\}=\overline{\{x^2+x+x^3\}}$

多項式環の剰余類環 (3)

- 部分集合がイデアルとなる
 - $I=\{0\}$, $\{x+1\}$, $\{x^2+1\}$, $\{x^2+x\}$, $\{x^3+1\}$, $\{x^3+x\}$, $\{x^3+x^2\}$, $\{x^3+x^2+x+1\}$
 - このイデアルに属する最小次数の多項式を含むものは
 - G(x)=x+1
 - G(x)はF(x)を割り切る
 - Iの元{H(x)}はすべてG(x)の倍数
 - G(x)は生成多項式とよばれる
 - $G_1(x)=x+1$ を生成多項式とするイデアル
 - $F(x)=x^4+1$ = (x+1)(x+1)(x+1)(x+1)

Residual Class Ring for Polynomial Ring (3)

- Subset becomes Ideal
 - $I=\{0\}$, $\{x+1\}$, $\{x^2+1\}$, $\{x^2+x\}$, $\{x^3+1\}$, $\{x^3+x\}$, $\{x^3+x^2\}$, $\{x^3+x^2+x+1\}$
 - The minimum order polynomial in this Ideal
 - G(x)=x+1
 - G(x) is divisible to F(x)
 - Elements of I {H(x)} are all multiple of G(x)
 - G(x) is called Generator Polynomial
 - Ideal based on generator polynomial $G_1(x)=x+1$
 - $F(x)=x^4+1$ = (x+1)(x+1)(x+1)(x+1)

多項式環の剰余類環 (4)

- 次に小さい次数の生成多項式
 - $G_2(x)=(x+1)(x+1)=x^2+1$ を生成多項式とするイデアル
 - このイデアルの元はG₂(x)の倍数
 - $I_2 = \{0\}\{x^2+1\}\{x^3+1\}\{x^3+x^2+x+1\}$
- ■もうひとつの生成多項式
 - $G_3(x)=(x+1)(x+1)(x+1)=x^3+x^2+x+1$ を生成多項式とするイデアル
 - $I_3 = \{0\}\{x^3 + x^2 + x + 1\}$

Residue Class Ring for Polynomial Ring (4)

- Next, small order generation polynomial
 - Ideal based on $G_2(x)=(x+1)(x+1)=x^2+1$
 - Elements of this ideal is multiples of $G_2(x)$
 - $I_2 = \{0\}\{x^2+1\}\{x^3+1\}\{x^3+x^2+x+1\}$
- Last generation polynomial
 - Ideal based on

$$G_3(x)=(x+1)(x+1)(x+1)=x^3+x^2+x+1$$

•
$$I_3 = \{0\}\{x^3 + x^2 + x + 1\}$$

ガロア体

- P(x)を体Fの上の多項式とする. このときP(x)が体Fの上で既約ならば, P(x)を法とする体Fの上の多項式環の剰余類環は体をなす
- Fをp個の元を有する体GF(p)とし、P(x)の次数をmとすれば、p^m 個の元を有する体ができる。これをガロア体あるいは有限体とよび、GF(p^m)で表す。素数のべき乗個の元を有する体となる。有限体の元の数を位数とよぶ。
- 体Fを基礎体とよび, これから導かれる体を拡大体とよぶ. P(x)の 次数をmとしたときに, m次の拡大体とよぶ.

Galois Field

- Let P(x) be polynomial on field F. If P(x) is irreducible on field F, residue class ring of polynomial ring on field F with modulo P(x) becomes field
- Let F be GF(p) having p elements. Let an order of P(x)be m. Field having p^m elements can be created. This is called Galois Field or Finite Field, noted by F(p^m). It has a field having m-power of prime number elements. Number of elements of GF is called order.
- On the above, F is called ground field. Derived one is called Extension Field. When the order of P(x) is m, it is called m-th order Extension Field.

拡大体

- 拡大体とは
 - 有限体 GF(P) を拡大したもの
 - GF(2) に対して GF(2^m) は拡大体
 - 拡大体では、元は整数だけではなく、m次既約多項式の根を付加
- 拡大体の例
 - GF(2²)=GF(4) は GF(2) の拡大体
 - 既約多項式の根を元に加える
 - $-x^2+x+1=0$ は2次既約多項式であり、この根 α を元に加える

Extension Field

- What is extension field?
 - Finite field GF(P) is extended
 - GF(2^m) is extension field for GF(2)
 - In extension field, element is not only integer but root of m-th degree irreducible polynomial
- Example of extension field
 - $GF(2^2)=GF(4)$ is an extension field for GF(2)
 - Root of irreducible polynomial is added
 - $x^2+x+1=0$ is 2nd degree irreducible polynomial, thus this equation's root α is added to the element

拡大体 (2)

- 拡大体の例(続き)
 - **0, 1, αから他の元を求める**
 - 体では積も同じ体の元に含まれる

$$\alpha^{0} = 1$$

$$\alpha^{1} = \alpha$$

$$\alpha^{2} = \alpha + 1 \quad (\alpha^{2} + \alpha + 1 = 0, \alpha = -\alpha)$$

$$\alpha^{3} = \alpha\alpha^{2} = \alpha(\alpha + 1) = \alpha + 1 + \alpha = 1$$

Extension Field (2)

- Example of extension field(cntd.)
 - Obtain other element from 0, 1, α
 - In field, product of elements is included in the elements of the same filed

$$\alpha^{0} = 1$$

$$\alpha^{1} = \alpha$$

$$\alpha^{2} = \alpha + 1 \quad (\alpha^{2} + \alpha + 1 = 0, \alpha = -\alpha)$$

$$\alpha^{3} = \alpha\alpha^{2} = \alpha(\alpha + 1) = \alpha + 1 + \alpha = 1$$

拡大体 (3)

- 拡大体の例(続き)
 - GF(4) 0, 1, α, α² を元とする

+	0	1	α	α^2
0	0	1 α		α^2
1	1	0	α^2	α
α	α	α^2	0	1
α^2	α^2	α	1	0

X	-X
0	0
1	1
α	α
α^2	α^2

Х	0	1	α	α^2
0	0	0	0	0
1	0	1	α	α^2
α	0	α	α^2	1
α^2	0	α^2	1	α

Χ	-X
0	-
1	1
α	α^2
α^2	α

Extension Field (3)

- Example of extension field(cntd.)
 - GF(4) has element 0, 1, α , α^2

+	0	1 α		α^2
0	0	1 α		α^2
1	1	0	α^2	α
α	α	α^2	0	1
α^2	α^2	α	1	0

Х	-x
0	0
1	1
α	α
α^2	α^2

X	0	1	α	α^2
0	0	0	0	0
1	0	1	α	α^2
α	0	α	α^2	1
α^2	0	α^2	1	α

X	-X
0	-
1	1
α	α^2
α^2	α

拡大体 (4)

- 一般に GF(2) のm次拡大体 GF(2^m)
 - 0 および m次既約多項式の根

$$\alpha^0$$
, α^1 , α^2 , ..., α^{2^m-2}

を GF(2^m) の原始元と呼ぶ

- なお, aは 2^m-1 乗で1に戻る

$$\alpha^{2^m-1}=1$$

- GF(2^m) の原始元のべきによる表現を"べき表現"という

Extension Field (4)

- In general, m-th degree extension field GF(2^m) for GF(2)
 - We call 0 and root of m-th degree irreducible polynomial

$$\alpha^0$$
, α^1 , α^2 , ..., α^{2^m-2}

primitive element of GF(2^m)

Here, a to the power of 2^m-1 result in 1

$$\alpha^{2^m-1}=1$$

 Representation of GF(2^m) by primitive element is called "power representation"

拡大体 (5)

- べき表現とベクトル表現
- GF(24), 既約多項式 x⁴+x+1 の根をαとした場合

べき表現	α^3 , α^2 , α , 1 による展開				ベクトル表現
0				0	0000
1				1	0001
α			α		0010
α^2		α^2			0100
α^3	α^3				1000
α^4			α	+1	0011
α^5		α^2	+α		0110

Extension Field (5)

- Power and vector representation
- GF(2⁴), let root of irreducible polynomial x^4+x+1 be α

Power Rep.	Extens	Extension by α^3 , α^2 , α , 1			
0				0	0000
1				1	0001
α			α		0010
α^2		α^2			0100
α^3	α^3				1000
$lpha^4$			α	+1	0011
α^5		α^2	$+\alpha$		0110

拡大体 (6)

べき表現	α^3 , α^2 ,	α , 1 (5)	ベクトル表現		
α^6	α^3	$+\alpha^2$			1100
α^7	α^3		$+ \alpha$	+1	1011
α^8		α^2		+1	0101
α^{9}	α^3		$+ \alpha$		1010
$lpha^{IO}$		α^2	$+ \alpha$	+1	0111
$lpha^{II}$	α^3	$+ \alpha^2$	$+ \alpha$		1110
a^{12}	α^3	$+ \alpha^2$	$+ \alpha$	+1	1111
α^{I3}	α^3	$+\alpha^2$		+1	1101
$lpha^{I4}$	α^3			+1	1001

Extension Field (6)

Power Rep.	Extens	ion by	Vector Rep.		
$lpha^6$	α^3	$+\alpha^2$			1100
α^7	α^3		$+ \alpha$	+1	1011
a^8		α^2		+1	0101
α^{9}	α^3		$+ \alpha$		1010
$lpha^{I0}$		α^2	$+ \alpha$	+1	0111
a^{II}	α^3	$+ \alpha^2$	$+ \alpha$		1110
a^{12}	α^3	$+ \alpha^2$	$+ \alpha$	+1	1111
a^{I3}	α^3	$+ \alpha^2$		+1	1101
α^{I4}	α^3			+1	1001