符号理論·暗号理論

- No.1 情報量 -

渡辺 裕

符号理論·暗号理論 / Coding Theory and Cryptography

Coding Theory / Cryptography

- No.1 Information -

Hiroshi Watanabe

符号理論·暗号理論 / Coding Theory and Cryptography

情報量

- 情報量とは? ... 情報の重要性を計りたい
 - 例1 通報1A: "犬が教授にかみついた" 通報1B: "教授が犬にかみついた"
 - 1Bは滅多に起こりそうにない → 情報としての価値が高い →
 - 例2 通報2A: "その日は6月で雪だった"
 - 通報2B: "その日は6月で雨だった"

 2Aは滅多に起こりそうにない → 情報としての価値が高い → 情報量が大きい

Information Content

- What is it? ... want to measure the importance of information
 - Ex.1 Message 1A: "A dog bite a professor." Message 1B: "A professor bite a dog."
 - 1B is not likely to happen \rightarrow information value is high \rightarrow information content must be large
 - Ex.2 Message 2A: "That day was snowing in June." Message 2B: "That day was raining in June."
 - 2A is not likely to happen → information value is high → information content must be large

2

情報量(2)

- 情報量として期待される性質 $1\dots$ 事象が起こる確率が低いほど大きな値をとる
 - 事象xの出現確率p(x)が小さいほど、情報量I(x)が大きくなるような尺度が望まれる
 - p(x) = 1 のときは、必ず起きる事象であり、情報としての価値がないから、I(x) = 0 となるような尺度
 - p(x) が0 に近いときは、ほぼ起こらない事象であり、情報としての価値が非常に高いから、I(x) は ∞ に近づくような尺度

符号理論·暗号理論 / Coding Theory and Cryptography

Information Content(2)

- Desired nature of information content (1) ... Value should be large when event has low probability
 - Desired measure satisfies that information content I(x)becomes large along with the occurrence probability p(x) of an event x becomes small
 - Information content becomes I(x)=0 when p(x)=1 since it always occurs and there is no value as an information
 - Information content I(x) approaches ∞ when p(x) is close to 0 since such event seldom occurs

情報量(3)

- 情報量として期待される性質2 ... 独立した複数の事象の情報量は、個々の事象の情報量の和
 - 事象 x および事象 y が独立に起こったとき、それぞれの出現確率を p(x), p(y)、情報量を I(x), I(y) とすると、事象 x と y の組み合わせに対する確率 p(t) は p(t)-p(x)p(y) であり、情報量 I(t) $\mathsf{It}, I(t) = I(x) + I(y)$
 - 例1と例2を組み合わせても、それぞれの事象... 例えば、"教授が犬に噛み付いた"、"その日は6月で雪だった" は独立

符号理論·暗号理論 / Coding Theory and Cryptography

Information Content(3)

- Desired nature of information content (2) ... Total information content of multiple independent events is given by summation of all event's information contents
 - Let the occurrence probabilities and information contents of the independent event x and y be p(x), p(y) and I(x), I(y). The combined probability p(t) of the events x and y is p(t)=p(x)p(y), and combined information content I(t) should be an addition of two information contents I(t)=I(x)+I(y)
 - When Ex.1 and 2 are combined, each event is independent. i.e. "A professor bite a dog." is independent from "That day was snowing in June." (x,y) = (x,y) + (y,y) = (y,y) =

符号理論·暗号理論 / Coding Theory and Cryptography

情報量(4)

- 情報量の定義
 - 情報量の性質1(単調減少性)および性質2(加法性)を満たす 関数... 対数関数 (log)
 - 対数の底を2に選んだ情報量 I(x) の定義... 出現確率 p(x) で ある事象 x の自己情報量 (Self Information Content)

$$I(x) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

- 単位はbit: Binary Unit の略

Information Content(4)

- Definition of Information Content
 - Find function which satisfies desired nature (1)
 - (Monotonic decreasing) and nature (2) (Addition) ... Logarithmic function (log) Definition of Information Content I(x) having 2 for logarithmic base I(x) ... Self Information Content of event x with the occurrence probability p(x)

$$I(x) \equiv \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

- Unit is bit: abbreviation of Binary Unit

復習

- 対数の演算
 - 対数の定義

$$log_a x = y \Leftrightarrow x = a^y$$

$$log_a xy = log_a x + log_a y$$

- べき乗の対数

$$log_a x^y = y log_a x$$

符号理論·暗号理論 / Coding Theory and Cryptography

Review

- Calculation of logarithm
 - Definition of logarithm

$$log_a x = y \iff x = a^y$$

- Logarithm of multiplied variables

$$log_a xy = log_a x + log_a y$$

- Logarithm of the variable to the power of other

$$log_a x^y = y log_a x$$

復習(2)

- 対数の計算
 - 情報理論でよく使う計算

$$-\log_a \frac{1}{x} = -\log_a x^{-1} = \log_a x$$

- 底の変換

$$\log_a x = \frac{\log_b x}{\log_b a}$$

符号理論·暗号理論 / Coding Theory and Cryptography

13

Review(2)

- Calculation of logarithm
 - Relation often used in information theory

$$-\log_a \frac{1}{x} = -\log_a x^{-1} = \log_a x$$

- Change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

符号理論·暗号理論 / Coding Theory and Cryptography

14

情報量(5)

■ 出現確率 p(t)=p(x)p(y) を持つ事象 x と y の組み合わせ事象 t に対する自己情報量 I(t) の加法性の確認

$$I(t) = -log_2 p(t)$$

$$= -log_2 p(x)p(y)$$

$$= -log_2 p(x) - log_2 p(y)$$

$$= I(x) + I(y)$$

符号理論·暗号理論 / Coding Theory and Cryptography

Information Content(5)

■ Confirmation of additional characteristics of information content *I(t)* where the combined event *t* (combined by *x* and *y*) has the occurrence probability *p(t)=p(x)p(y)*

$$I(t) = -log_2 p(t)$$

$$= -log_2 p(x)p(y)$$

$$= -log_2 p(x) - log_2 p(y)$$

$$= I(x) + I(y)$$

符号理論・暗号理論 / Coding Theory and Cryptography

16

計算例

- サイコロを1個振って1がでたときの情報量
- トランプのカードを1枚抜いたときにAであったときの情報量

符号理論·暗号理論 / Coding Theory and Cryptography

Quiz

- How much is the information content when you get 1 by casting one dice?
- How much is the information content when you get ace by drawing one card?

符号理論·暗号理論 / Coding Theory and Cryptography

18

平均情報量

- 自己情報量
 - 単一の通報のもつ情報量
- - ある出現確率で起こる通報の平均的な重要性の尺度
 - 重要性が異なる例
 - LA(6月)の天気予報

 - p(hazy sunshine)=0.95, p(shower)=0.05 ほとんど晴れなので、平均的には天気予報は重要ではない
- 東京(6月)の天気予報 p(晴れ)=0.6, p(時々雨)=0.4 晴れか雨かわからないので、天気予報は重要

符号理論·暗号理論 / Coding Theory and Cryptography

19

Mean Information Content

- Self Information Content
- Information Content of one message
- Mean Information Content
 - Measure of mean importance of messages occur in a certain probability
 - Example of different importance
 - Weather forecast of LA in Tune
 - p(hazy sunshine)=0.95, p(shower)=0.05
 - Weather forecast is not important in average since it is almost always hazy sunshine.
 - Weather forecast of Tokyo in June

 - p(fine)=0.6, p(occasionally rain)=0.4 Weather forecast is important since it is uncertain.

符号理論·暗号理論 / Coding Theory and Cryptography

20

平均情報量(2)

- 平均情報量の定義
 - N 個の事象 a_1,a_2,\ldots,a_N の出現確率を p_1,p_2,\ldots,p_N としたとき の平均情報量 I_{ave}

$$I_{ave} = -\sum_{i=1}^{N} p_i \log_2 p_i$$

平均情報量はエントロピーとも呼ばれ、無記憶情報源 S に対するエントロピーを H(s) と表記する

$$H(S) = I_{ave} = -\sum_{i=1}^{N} p_i \log_2 p_i$$

Mean Information Content(2)

- Definition of Mean Information Content
 - To N events a_1, a_2, \dots, a_N having occurrence probabilities p_1, p_2, \dots, p_N , the mean information content I_{ave} is given as follows.

$$I_{ave} = -\sum_{i=1}^{N} p_i \log_2 p_i$$

Mean information content is called "Entropy." Entropy H(S) for the memory-less source S is denoted by

$$H(S) = I_{ave} = -\sum_{i=1}^{N} p_i \log_2 p_i$$

符号理論·暗号理論 / Coding Theory and Cryptography

平均情報量(3)

- 平均情報量の計算例
 - LA6月および東京6月の天気予報の平均情報量を I_{ave}(L), $I_{ave}(T)$ とすると

$$I_{ave}(L) = -0.95 \log_2 0.95 - 0.05 \log_2 0.05 = 0.286$$

$$I_{ave}(T) = -0.6 \log_2 0.6 - 0.4 \log_2 0.4 = 0.997$$

となり、東京6月の天気予報の方が、平均情報量が大きく、重要 な通報であることがわかる

符号理論·暗号理論 / Coding Theory and Cryptography

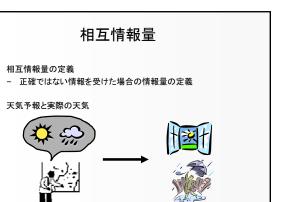
Mean Information Content(3)

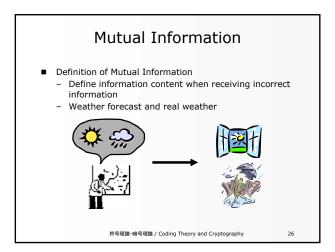
- Example of Mean Information Content
 - Let mean information content to weather forecast LA in July and Tokyo in July be $I_{ave}(L)$, $I_{ave}(T)$

$$I_{ave}(L) = -0.95 \log_2 0.95 - 0.05 \log_2 0.05 = 0.286$$

$$I_{ave}(T) = -0.6 \log_2 0.6 - 0.4 \log_2 0.4 = 0.997$$

Thus, mean information content of weather forecast Tokyo in July has larger value, and is recognized more important message.





相互情報量(2)

符号理論·暗号理論 / Coding Theory and Cryptography

- 天気予報の例
 - X: 実際の天気
 - Y: 天気予報
 - P(x,y): それぞれの確率
 - P(x), P(y): 結合確率分布

		Y		
P(x	c,y)	晴雨		P(x)
X	晴	0.45	0.12	0.57
	雨	0.15	0.28	0.43
P(y)		0.60	0.40	

符号理論·暗号理論 / Coding Theory and Cryptography

Mutual Information(2)

- Example
 - X: Real weather
 - Y: Weather forecast
 - P(x,y): Individual probability
 - P(x), P(y): Joint probability

P(x,y)		Y		n()
P()	c,y)	fine rain 0.45 0.12		P(x)
X	fine	0.45	0.12	0.57
	rain	0.15	0.28	0.43
P(y)		0.60	0.40	

符号理論·暗号理論 / Coding Theory and Cryptography

相互情報量(3)

- 実際の天気のエントロピー: H(X) $H(X) = H_f(0.57) = 0.986$
- ここに、 H_f はエントロピー関数 $H_f(p) \equiv -p \log_2 p (1-p) \log_2 (1-p)$
- 天気予報を既知としたときの実際の天気の条件付確率

$$P(x/y) = \frac{P(x,y)}{P(y)}$$

符号理論·暗号理論 / Coding Theory and Cryptography

Mutual Information(3)

- Entropy of real weather: H(X) $H(X) = H_f(0.57) = 0.986$
- \blacksquare where, H_f denotes entropy function

$$H_f(p) \equiv -p \log_2 p - (1-p) \log_2 (1-p)$$

conditional probability of real weather when we know weather forecast

$$P(x/y) = \frac{P(x,y)}{P(y)}$$

符号理論·暗号理論 / Coding Theory and Cryptography

30

相互情報量(4)

- 条件付確率(天気予報既知)
 - 天気予報が晴のときに実際の天気が晴、雨の確率は0.75,

天気予報"晴"が既知の場合の実際の天気のエントロピー: H(X|f)

 $H(X/f) = H_f(0.75) = 0.81$

天気予報"雨"が既知の場合の実際の天気のエントロピー: H(X/r)

 $H(X/r) = H_f(0.70) = 0.88$

符号理論·暗号理論 / Coding Theory and Cryptography

D(x	(1)	Y		
P(x	<i>(y)</i>	晴 雨		
X	晴	0.75	0.30	
	雨	0.25	0.70	

Mutual Information(4)

P(x|y)

rain

fain rain 0.30

0.75 fine

0.25 0.70

32

- Conditional probability (under known weather forecast)
 P(fine)=0.75, P(rain)=0.25 when weather forecast says "fine"

Real weather's entropy : H(X|f) when forecast "fine" is known

 $H(X/f) = H_f(0.75) = 0.81$

Real weather's entropy : H(X/r) when forecast "rain" is known $H(X/r) = H_f(0.70) = 0.88$

符号理論·暗号理論 / Coding Theory and Cryptography

相互情報量(5)

- 条件付エントロピー
 - 天気予報を既知としたときの実際の天気のエントロピー:

 $H(X/Y) = 0.60 \times 0.81 + 0.40 \times 0.88 = 0.838$

- 条件付エントロピーの定義

$$H(X/Y) = -\sum_{y} P(y) \sum_{x} P(x/y) log_{2} P(x/y)$$
$$= -\sum_{y} \sum_{y} P(x,y) log_{2} P(x/y)$$

31

Mutual Information(5)

- Conditional entropy
 - Real weather's entropy with known weather forecast: H(X/Y)

 $H(X/Y) = 0.60 \times 0.81 + 0.40 \times 0.88 = 0.838$

- Definition of conditional entropy

$$H(X/Y) = -\sum_{y} P(y) \sum_{x} P(x/y) \log_{2} P(x/y)$$
$$= -\sum_{x} \sum_{y} P(x,y) \log_{2} P(x/y)$$

符号理論·暗号理論 / Coding Theory and Cryptography

相互情報量(6)

■ 相互情報量 (Mutual Information (content))

 $I(X;Y) \equiv H(X) - H(X/Y)$

- 相互情報量は、情報によって減少したあいまいさの尺度
 - 天気予報の例では、H(X)=0.986, H(X/Y)=0.838 であり、相互情 報量は I(X;Y)=0.986-0.838=0.146 となる
 - 天気予報によって、実際の天気に関して、平均 0.146 ビットの 情報量が与えられることを意味する

符号理論·暗号理論 / Coding Theory and Cryptography

Mutual Information(6)

■ Mutual Information (content)

 $I(X;Y) \equiv H(X) - H(X/Y)$

- Mutual Information is a measure of ambiguity by receiving information
 - In the example, H(X)=0.986, H(X/Y)=0.838. Thus, mutual information is given by I(X;Y)=0.9860.838 = 0.146
 - This means that 0.146 bits information is given in average by weather forecast in regard to real weather